
Powerline
Release beta

February 18, 2015

Contents

1 Overview 1
1.1 Features . 1
1.2 Screenshots . 1

2 Installation 3
2.1 Generic requirements . 3
2.2 Pip installation . 3
2.3 Fonts installation . 4
2.4 Installation on various platforms . 4

3 Usage 9
3.1 Application-specific requirements . 9
3.2 Plugins . 10

4 Configuration and customization 17
4.1 Quick setup guide . 18
4.2 References . 19

5 Developer guide 49
5.1 Writing segments . 49
5.2 Writing listers . 55
5.3 Local themes . 55
5.4 Creating new powerline extension . 56
5.5 Tips and tricks for powerline developers . 62

6 Troubleshooting 63
6.1 System-specific issues . 63
6.2 Common issues . 65
6.3 Tmux/screen-related issues . 66
6.4 Shell issues . 67
6.5 Vim issues . 68

7 Tips and tricks 71
7.1 Vim . 71
7.2 Rxvt-unicode . 71
7.3 Reloading powerline after update . 72

8 License and credits 73
8.1 Authors . 73

i

8.2 Contributors . 73

9 Powerline shell commands’ manual pages 75
9.1 powerline-config manual page . 75
9.2 powerline-daemon manual page . 76
9.3 powerline-lint manual page . 77
9.4 powerline manual page . 77

10 Indices and tables 79

Python Module Index 81

ii

CHAPTER 1

Overview

Powerline is a statusline plugin for vim, and provides statuslines and prompts for several other applications,
including zsh, bash, tmux, IPython, Awesome and Qtile.

1.1 Features

• Extensible and feature rich, written in Python. Powerline was completely rewritten in Python to get rid of
as much vimscript as possible. This has allowed much better extensibility, leaner and better config files, and a
structured, object-oriented codebase with no mandatory third-party dependencies other than a Python interpreter.

• Stable and testable code base. Using Python has allowed unit testing of all the project code. The code is tested
to work in Python 2.6+ and Python 3.

• Support for prompts and statuslines in many applications. Originally created exclusively for vim statuslines,
the project has evolved to provide statuslines in tmux and several WMs, and prompts for shells like bash/zsh and
other applications. It’s simple to write renderers for any other applications that Powerline doesn’t yet support.

• Configuration and colorschemes written in JSON. JSON is a standardized, simple and easy to use file format
that allows for easy user configuration across all of Powerline’s supported applications.

• Fast and lightweight, with daemon support for even better performance. Although the code base spans a
couple of thousand lines of code with no goal of “less than X lines of code”, the main focus is on good perfor-
mance and as little code as possible while still providing a rich set of features. The new daemon also ensures
that only one Python instance is launched for prompts and statuslines, which provides excellent performance.

But I hate Python / I don’t need shell prompts / this is just too much hassle for me / what happened to the original
vim-powerline project / . . .

You should check out some of the Powerline derivatives. The most lightweight and feature-rich alternative is currently
Bailey Ling’s vim-airline1 project.

1.2 Screenshots

1.2.1 Vim statusline

Mode-dependent highlighting

•
1https://github.com/bling/vim-airline

1

https://github.com/bling/vim-airline

Powerline, Release beta

•

•

•

Automatic truncation of segments in small windows

•

•

•

2 Chapter 1. Overview

CHAPTER 2

Installation

2.1 Generic requirements

• Python 2.6 or later, 3.2 or later, PyPy 2.0 or later, PyPy3 2.3 or later. It is the only non-optional requirement.

• C compiler. Required to build powerline client on linux. If it is not present then powerline will fall back to shell
script or python client.

• socat program. Required for shell variant of client which runs a bit faster than python version of the client,
but still slower than C version.

• psutil python package. Required for some segments like cpu_percent. Some segments have linux-only
fallbacks for psutil functionality.

• mercurial python package (note: not standalone executable). Required to work with mercurial repositories.

• pygit2 python package or git executable. Required to work with git repositories.

• bzr python package (note: not standalone executable). Required to work with bazaar repositories.

• pyuv python package. Required for libuv-based watcher to work.

• i3-py, available on github1. Required for i3wm bindings and segments.

Note: Until mercurial and bazaar support Python-3 or PyPy powerline will not support repository information when
running in these interpreters.

2.2 Pip installation

Due to a naming conflict with an unrelated project powerline is available on PyPI under the powerline-status
name:

pip install powerline-status

is the preferred method because this will get the latest release. To get current development version

pip install --user git+git://github.com/powerline/powerline

may be used. If powerline was already checked out into some directory

1https://github.com/ziberna/i3-py

3

https://github.com/ziberna/i3-py

Powerline, Release beta

pip install --user --editable={path_to_powerline}

is useful, but note that in this case pip will not install powerline executable and something like

ln -s {path_to_powerline}/scripts/powerline ~/.local/bin

will have to be done (~/.local/bin should be replaced with some path present in $PATH).

Note: If ISP blocks git protocol for some reason github also pro-
vides ssh (git+ssh://git@github.com/powerline/powerline) and https
(git+https://github.com/powerline/powerline) protocols. git protocol should be the fastest,
but least secure one though.

2.3 Fonts installation

Powerline uses several special glyphs to get the arrow effect and some custom symbols for developers. This requires
having either a symbol font or a patched font installed in the system. Used application (e.g. terminal emulator) must
also either be configured to use patched fonts (in some cases even support it because custom glyphs live in private
use area which some applications reserve for themselves) or support fontconfig for powerline to work properly with
powerline-specific glyphs.

24-bit color support may be enabled if used terminal emulator supports it (see the terminal emulator support matrix).

There are basically two ways to get powerline glyphs displayed: use PowerlineSymbols.otf font as a fallback
for one of the existing fonts or install a patched font.

2.3.1 Patched fonts

This method is the fallback method and works for every terminal, with the exception of rxvt-unicode.

Download the font from powerline-fonts2. If preferred font can’t be found in the powerline-fonts3 repo, then patching
the preferred font is needed instead.

After downloading this font refer to platform-specific instructions.

2.4 Installation on various platforms

2.4.1 Installation on Linux

The following distribution-specific packages are officially supported, and they provide an easy way of installing and
upgrading Powerline. The packages will automatically do most of the configuration.

• Arch Linux (AUR), Python 2 version4

• Arch Linux (AUR), Python 3 version5

• Gentoo Live ebuild in raiagent6 overlay

2https://github.com/powerline/fonts
3https://github.com/powerline/fonts
4https://aur.archlinux.org/packages/python2-powerline-git/
5https://aur.archlinux.org/packages/python-powerline-git/
6https://github.com/leycec/raiagent

4 Chapter 2. Installation

https://github.com/powerline/fonts
https://github.com/powerline/fonts
https://aur.archlinux.org/packages/python2-powerline-git/
https://aur.archlinux.org/packages/python-powerline-git/
https://github.com/leycec/raiagent

Powerline, Release beta

• Powerline package is available for Debian starting from Wheezy (via backports7). Use search8 to get more
information.

If used distribution does not have an official package installation guide below should be followed:

1. Install Python 3.2+, Python 2.6+ or PyPy and pip with setuptools. This step is distribution-specific, so no
commands provided.

2. Install Powerline using one of the following commands:

pip install --user powerline-status

will get the latest release version and

pip install --user git+git://github.com/powerline/powerline

will get the latest development version.

Note: Due to the naming conflict with an unrelated project powerline is named powerline-status in
PyPI.

Note: Powerline developers should be aware that‘‘pip install –editable‘‘ does not currently fully work. Instal-
lation performed this way are missing powerline executable that needs to be symlinked. It will be located in
scripts/powerline.

Fonts installation

Fontconfig

This method only works on Linux. It’s the second recommended method if terminal emulator supports it as patching
fonts is not needed, and it generally works with any coding font.

1. Download the latest version of the symbol font and fontconfig file:

wget https://github.com/powerline/powerline/raw/develop/font/PowerlineSymbols.otf
wget https://github.com/powerline/powerline/raw/develop/font/10-powerline-symbols.conf

2. Move the symbol font to a valid X font path. Valid font paths can be listed with xset q:

mv PowerlineSymbols.otf ~/.fonts/

3. Update font cache for the path the font was moved to (root priveleges may be needed to update cache for the
system-wide paths):

fc-cache -vf ~/.fonts/

4. Install the fontconfig file. For newer versions of fontconfig the config path is
~/.config/fontconfig/conf.d/, for older versions it’s ~/.fonts.conf.d/:

mv 10-powerline-symbols.conf ~/.config/fontconfig/conf.d/

If custom symbols still cannot be seen then try closing all instances of the terminal emulator. Restarting X may be
needed for the changes to take effect.

If custom symbols still can’t be seen, double-check that the font have been installed to a valid X font path, and that the
fontconfig file was installed to a valid fontconfig path. Alternatively try to install a patched font.

7https://packages.debian.org/wheezy-backports/powerline
8https://packages.debian.org/search?keywords=powerline&searchon=names&suite=all§ion=all

2.4. Installation on various platforms 5

https://packages.debian.org/wheezy-backports/powerline
https://packages.debian.org/search?keywords=powerline&searchon=names&suite=all§ion=all

Powerline, Release beta

Patched font installation

This is the preferred method, but it is not always available because not all fonts were patched and not all fonts can be
patched due to licensing issues.

After downloading font the following should be done:

1. Move the patched font to a valid X font path. Valid font paths can be listed with xset q:

mv ’SomeFont for Powerline.otf’ ~/.fonts/

2. Update font cache for the path the font was moved to (root priveleges may be needed for updating font cache
for some paths):

fc-cache -vf ~/.fonts/

After installing patched font terminal emulator, GVim or whatever application powerline should work with must be
configured to use the patched font. The correct font usually ends with for Powerline.

If custom symbols cannot be seen then try closing all instances of the terminal emulator. X server may need to be
restarted for the changes to take effect.

If custom symbols still can’t be seen then double-check that the font have been installed to a valid X font path.

2.4.2 Installation on OS X

Python package

1. Install a proper Python version (see issue #399 for a discussion regarding the required Python version on OS X):

sudo port select python python27-apple

. Homebrew may be used here:

brew install python

.

Note: In case powerline.sh as a client socat and coreutils need to be installed. coreutils may
be installed using brew install coreutils.

2. Install Powerline using one of the following commans:

pip install --user powerline-status

will get current release version and

pip install --user git+git://github.com/powerline/powerline

will get latest development version.

Warning: When using brew install to install Python one must not supply --user flag to pip.

Note: Due to the naming conflict with an unrelated project powerline is named powerline-status in
PyPI.

9https://github.com/powerline/powerline/issues/39

6 Chapter 2. Installation

https://github.com/powerline/powerline/issues/39

Powerline, Release beta

Note: Powerline developers should be aware that‘‘pip install –editable‘‘ does not currently fully work. Instal-
lation performed this way are missing powerline executable that needs to be symlinked. It will be located in
scripts/powerline.

Vim installation

Any terminal vim version with Python 3.2+ or Python 2.6+ support should work, but MacVim users need to install it
using the following command:

brew install macvim --env-std --override-system-vim

Fonts installation

Install downloaded patched font by double-clicking the font file in Finder, then clicking Install this font in the preview
window.

After installing the patched font MacVim or terminal emulator (whatever application powerline should work with)
need to be configured to use the patched font. The correct font usually ends with for Powerline.

2.4. Installation on various platforms 7

Powerline, Release beta

8 Chapter 2. Installation

CHAPTER 3

Usage

3.1 Application-specific requirements

3.1.1 Vim plugin requirements

The vim plugin requires a vim version with Python support compiled in. Presense of Python support in Vim can be
checked by running vim --version | grep +python.

If Python support is absent then Vim needs to be compiled with it. To do this use --enable-pythoninterp
./configure flag (Python 3 uses --enable-python3interp flag instead). Note that this also requires the
related Python headers to be installed. Please consult distribution’s documentation for details on how to compile and
install packages.

Vim version 7.4 or newer is recommended for performance reasons, but Powerline is known to work on vim-7.0.112
(some segments may not work though as it was not actually tested).

3.1.2 Terminal emulator requirements

Powerline uses several special glyphs to get the arrow effect and some custom symbols for developers. This requires
either a symbol font or a patched font installed. Used terminal emulator must also support either patched fonts or
fontconfig for Powerline to work properly.

24-bit color support can also be enabled if terminal emulator supports it.

9

Powerline, Release beta

Table 3.1: Application/terminal emulator feature support matrix

Name OS Patched font support Fontconfig support 24-bit color support

Gvim Linux

iTerm2 OS X

Konsole Linux

lxterminal Linux

MacVim OS X

rxvt-unicode Linux 6

st Linux 7

Terminal.app OS X

libvte-based 8 Linux 9

xterm Linux 10

fbterm Linux

3.2 Plugins

3.2.1 Shell prompts

Note: Powerline daemon is not run automatically by any of my bindings. It is advised to add

powerline-daemon -q

before any other powerline-related code in the shell configuration file.

Bash prompt

Add the following line to the bashrc, where {repository_root} is the absolute path to the Powerline installa-
tion directory:

. {repository_root}/powerline/bindings/bash/powerline.sh

Note: Since without powerline daemon bash bindings are very slow PS2 (continuation) and PS3 (select) prompts are
not set up. Thus it is advised to use

powerline-daemon -q
POWERLINE_BASH_CONTINUATION=1
POWERLINE_BASH_SELECT=1
. {repository_root}/powerline/bindings/bash/powerline.sh

in the bash configuration file. Without POWERLINE_BASH_* variables PS2 and PS3 prompts are computed exactly
once at bash startup.

10 Chapter 3. Usage

Powerline, Release beta

Warning: At maximum bash continuation PS2 and select PS3 prompts are computed each time main PS1 prompt
is computed. Thus putting e.g. current time into PS2 or PS3 prompt will not work as expected.
At minimum they are computed once on startup.

Zsh prompt

Add the following line to the zshrc, where {repository_root} is the absolute path to the Powerline installation
directory:

. {repository_root}/powerline/bindings/zsh/powerline.zsh

Fish prompt

Add the following line to config.fish, where {repository_root} is the absolute path to the Powerline
installation directory:

set fish_function_path $fish_function_path "{repository_root}/powerline/bindings/fish"
powerline-setup

Rcsh prompt

Powerline supports Plan9 rc reimplementation by Byron Rakitzis packaged by many *nix distributions. To use it add

. {repository_root}/powerline/bindings/rc/powerline.rc

to rcrc file (usually ~/.rcrc) and make sure rc is started as a login shell (with -l argument): otherwise this
configuration file is not read.

Warning: Original Plan9 shell and its *nix port are not supported because they are missing prompt special
function (it is being called once before each non-continuation prompt). Since powerline could not support shell
without this or equivalent feature some other not-so-critical features of that port were used.

Busybox (ash), mksh and dash prompt

After launching busybox run the following command:

. {repository_root}/powerline/bindings/shell/powerline.sh

Mksh users may put this line into ~/.mkshrc file. Dash users may use the following in ~/.profile:

if test "x$0" != "x${0#dash}" ; then
export ENV={repository_root}/powerline/bindings/shell/powerline.sh

fi

Note: Dash users that already have $ENV defined should either put the/shell/powerline.sh line in
the $ENV file or create a new file which will source (using . command) both former $ENV file and powerline.sh
files and set $ENV to the path of this new file.

3.2. Plugins 11

Powerline, Release beta

Warning: Mksh users have to set $POWERLINE_SHELL_CONTINUATION and
$POWERLINE_SHELL_SELECT to 1 to get PS2 and PS3 (continuation and select) prompts support re-
spectively: as command substitution is not performed in these shells for these prompts they are updated once each
time PS1 prompt is displayed which may be slow.
It is also known that while PS2 and PS3 update is triggered at PS1 update it is actually performed only next time
PS1 is displayed which means that PS2 and PS3 prompts will be outdated and may be incorrect for this reason.
Without these variables PS2 and PS3 prompts will be set once at startup. This only touches mksh users: busybox
and dash both have no such problem.

Warning: Job count is using some weird hack that uses signals and temporary files for interprocess communica-
tion. It may be wrong sometimes. Not the case in mksh.

Warning: Busybox has two shells: ash and hush. Second is known to segfault in busybox 1.22.1 when using
powerline.sh script.

3.2.2 Window manager widgets

Awesome widget

Note: Powerline currently only supports awesome 3.5.

Note: The Powerline widget will spawn a shell script that runs in the background and updates the statusline with
awesome-client.

Add the following to rc.lua, where {repository_root} is the absolute path to Powerline installation directory:

package.path = package.path .. ’;{repository_root}/powerline/bindings/awesome/?.lua’
require(’powerline’)

Then add the powerline_widget to wibox:

right_layout:add(powerline_widget)

Qtile widget

Add the following to ~/.config/qtile/config.py:

from powerline.bindings.qtile.widget import Powerline

screens = [
Screen(

top=bar.Bar([
...
Powerline(timeout=2),
...

],
),

),
]

12 Chapter 3. Usage

Powerline, Release beta

LemonBoy’s bar

To run the bar simply pipe the output of the binding script into bar and specify appropriate options, for example like
this:

python /path/to/powerline/bindings/bar/powerline-bar.py | bar

to run with i3, simply exec this in i3 config file:

exec python /path/to/powerline/bindings/bar/powerline-bar.py --i3 | bar

See the bar documentation11 for more information and options.

I3 bar

Note: As the patch to include background-colors in i3bar is likely not to be merged, it is recommended to instead run
bar (see above). The source for i3bgbar is however still available here12.

Add the following to ~/.i3/config:

bar {
i3bar_command i3bgbar

status_command python /path/to/powerline/bindings/i3/powerline-i3.py
font pango:PowerlineFont 12

}

where i3bgbar may be replaced with the path to the custom i3bar binary and PowerlineFont is any system font
with powerline support.

3.2.3 Other plugins

Vim statusline

If installed using pip just add

python from powerline.vim import setup as powerline_setup
python powerline_setup()
python del powerline_setup

(replace python with python3 if appropriate) to the vimrc.

If the repository was just cloned the following line needs to be added to the vimrc:

set rtp+={repository_root}/powerline/bindings/vim

where {repository_root} is the absolute path to the Powerline installation directory.

If pathogen is used and Powerline functionality is not needed outside of Vim then it is possible to
simply add Powerline as a bundle and point the path above to the Powerline bundle directory, e.g.
~/.vim/bundle/powerline/powerline/bindings/vim.

Vundle and NeoBundle users may instead use

11https://github.com/LemonBoy/bar
12https://github.com/S0lll0s/i3bgbar

3.2. Plugins 13

https://github.com/LemonBoy/bar
https://github.com/S0lll0s/i3bgbar

Powerline, Release beta

Bundle ’powerline/powerline’, {’rtp’: ’powerline/bindings/vim/’}

(NeoBundle users need NeoBundle in place of Bundle, otherwise setup is the same).

Vim-addon-manager setup is even easier because it is not needed to write this big path or install anything by hand:
powerline can be installed and activated just like any other plugin using

call vam#ActivateAddons([’powerline’])

Warning: Never install powerline with pathogen/VAM/Vundle/NeoBundle and with pip. If powerline func-
tionality is needed in applications other then Vim then system-wide installation (in case used OS distribution has
powerline package), pip-only or pip install --editable kind of installation performed on the repository
installed by Vim plugin manager should be used.
No issues are accepted in powerline issue tracker for double pip/non-pip installations, especially if these issues
occur after update.

Note: If supplied powerline.vim file is used to load powerline there are additional configuration variables
available: g:powerline_pycmd and g:powerline_pyeval. First sets command used to load powerline:
expected values are "py" and "py3". Second sets function used in statusline, expected values are "pyeval"
and "py3eval".

If g:powerline_pycmd is set to the one of the expected values then g:powerline_pyeval will be set accord-
ingly. If it is set to some other value then g:powerline_pyeval must also be set. Powerline will not check that
Vim is compiled with Python support if g:powerline_pycmd is set to an unexpected value.

These values are to be used to specify the only Python that is to be loaded if both versions are present: Vim may
disable loading one python version if other was already loaded. They should also be used if two python versions are
able to load simultaneously, but powerline was installed only for python-3 version.

Tmux statusline

Add the following lines to .tmux.conf, where {repository_root} is the absolute path to the Powerline
installation directory:

source "{repository_root}/powerline/bindings/tmux/powerline.conf"

Note: The availability of the powerline-config command is required for powerline support. DLlocation of this
script may be specified via $POWERLINE_CONFIG_COMMAND environment variable.

Note: It is advised to run powerline-daemon before adding the above line to tmux.conf. To do so add:

run-shell "powerline-daemon -q"

to .tmux.conf.

IPython prompt

For IPython<0.11 add the following lines to .ipython/ipy_user_conf.py:

top
from powerline.bindings.ipython.pre_0_11 import setup as powerline_setup

main() function (assuming ipython was launched without configuration to

14 Chapter 3. Usage

Powerline, Release beta

create skeleton ipy_user_conf.py file):
powerline_setup()

For IPython>=0.11 add the following line to ipython_config.py file in the used profile:

c.InteractiveShellApp.extensions = [
’powerline.bindings.ipython.post_0_11’

]

IPython=0.11* is not supported and does not work. IPython<0.10 was not tested (not installable by pip).

PDB prompt

To use Powerline with PDB prompt you need to use custom class. Inherit your class from pdb.Pdb and decorate it
with powerline.bindings.pdb.use_powerline_prompt():

import pdb

from powerline.bindings.pdb import use_powerline_prompt

@use_powerline_prompt
class MyPdb(pdb.Pdb):

pass

MyPdb.run(’some.code.to.debug()’)

. Alternatively you may use

python -mpowerline.bindings.pdb path/to/script.py

just like you used python -m pdb.

3.2. Plugins 15

Powerline, Release beta

16 Chapter 3. Usage

CHAPTER 4

Configuration and customization

Note: Forking the main GitHub repo is not needed to personalize Powerline configuration! Please read through
the Quick setup guide for a quick introduction to user configuration.

Powerline is configured with one main configuration file, and with separate configuration files for themes and col-
orschemes. All configuration files are written in JSON, with the exception of segment definitions, which are written
in Python.

Powerline provides default configurations in the following locations:

Main configuration powerline/config.json

Colorschemes powerline/colorschemes/name.json, powerline/colorscheme/extension/__main__.json,
powerline/colorschemes/extension/name.json

Themes powerline/themes/top_theme.json, powerline/themes/extension/__main__.json,
powerline/themes/extension/default.json

The default configuration files are stored in the main package. User configuration files are stored in
$XDG_CONFIG_HOME/powerline for Linux users, and in ~/.config/powerline for OS X users. This
usually corresponds to ~/.config/powerline on both platforms.

If per-instance configuration is needed please refer to Local configuration overrides.

Note: Existing multiple configuration files that have the same name, but are placed in different directories, will be
merged. Merging happens in the following order:

• powerline_root/powerline/config_files is checked for configuration first. Configuration from
this source has least priority.

• $XDG_CONFIG_DIRS/powerline directories are the next ones to check. Checking happens in the reversed
order: directories mentioned last are checked before directories mentioned first. Each new found file is merged
with the result of previous merge.

• $XDG_CONFIG_HOME/powerline directory is the last to check. Configuration from there has top priority.

When merging configuration only dictionaries are merged and they are merged recursively: keys from next file overrule
those from the previous unless corresponding values are both dictionaries in which case these dictionaries are merged
and key is assigned the result of the merge.

Note: Some configuration files (i.e. themes and colorschemes) have two level of merging: first happens merging
described above, second theme- or colorscheme-specific merging happens.

17

Powerline, Release beta

4.1 Quick setup guide

This guide will help you with the initial configuration of Powerline.

Look at configuration in powerline_root/powerline/config_files. If you want to modify some file you
can create ~/.config/powerline directory and put modifications there: all configuration files are merged with
each other.

Each extension (vim, tmux, etc.) has its own theme, and they are located in config
directory/themes/extension/default.json. Best way to modify it is to copy this theme as a
whole, remove segment_data key with corresponding value if present (unless you need to modify it, in which
case only modifications must be left) and do necessary modifications in the list of segments (lists are not subject to
merging: this is why you need a copy).

If you want to move, remove or customize any of the provided segments in the copy, you can do that by updating the
segment dictionary in the theme you want to customize. A segment dictionary looks like this:

{
"name": "segment_name"
...

}

You can move the segment dictionaries around to change the segment positions, or remove the entire dictionary to
remove the segment from the prompt or statusline.

Note: It’s essential that the contents of all your configuration files is valid JSON! It’s strongly recommended that you
run your configuration files through jsonlint after changing them.

Note: If your modifications appear not to work, run powerline-lint script. This script should show you the location
of the error.

Some segments need a user configuration to work properly. Here’s a couple of segments that you may want to
customize right away:

E-mail alert segment You have to set your username and password (and possibly server/port) for the e-mail alert
segment. If you’re using GMail it’s recommended that you generate an application-specific password1 for this
purpose.

Open a theme file, scroll down to the email_imap_alert segment and set your username and password.
The server defaults to GMail’s IMAP server, but you can set the server/port by adding a server and a port
argument.

Weather segment The weather segment will try to find your location using a GeoIP lookup, so unless you’re on a
VPN you probably won’t have to change the location query.

If you want to change the location query or the temperature unit you’ll have to update the segment arguments.
Open a theme file, scroll down to the weather segment and update it to include unit/location query arguments:

{
"name": "weather",
"priority": 50,
"args": {

"unit": "F",
"location_query": "oslo, norway"

}
},

1https://accounts.google.com/IssuedAuthSubTokens

18 Chapter 4. Configuration and customization

https://accounts.google.com/IssuedAuthSubTokens

Powerline, Release beta

4.2 References

4.2.1 Configuration reference

Main configuration

Location powerline/config.json

The main configuration file defines some common options that applies to all extensions, as well as some extension-
specific options like themes and colorschemes.

Common configuration

Common configuration is a subdictionary that is a value of common key in powerline/config.json file.

term_truecolor Defines whether to output cterm indices (8-bit) or RGB colors (24-bit) to the terminal emulator.
See the Application/terminal emulator feature support matrix for information on whether used terminal emulator
supports 24-bit colors.

This variable is forced to be false if term_escape_style option is set to "fbterm" or if it is set to "auto"
and powerline detected fbterm.

term_escape_style Defines what escapes sequences should be used. Accepts three variants:

Vari-
ant

Description

auto xterm or fbterm depending on $TERM variable value: TERM=fbterm implies fbterm
escaping style, all other values select xterm escaping.

xterm Uses \e[{fb};5;{color}m for colors ({fb} is either 38 (foreground) or 48 (background)).
Should be used for most terminals.

fbterm Uses \e[{fb};{color}} for colors ({fb} is either 1 (foreground) or 2 (background)).
Should be used for fbterm: framebuffer terminal.

ambiwidth Tells powerline what to do with characters with East Asian Width Class Ambigious (such as Euro,
Registered Sign, Copyright Sign, Greek letters, Cyrillic letters). Valid values: any positive integer; it is suggested
that this option is only set it to 1 (default) or 2.

watcher Select filesystem watcher. Variants are

Variant Description
auto Selects most performant watcher.
inotify Select inotify watcher. Linux only.
stat Select stat-based polling watcher.
uv Select libuv-based watcher.

Default is auto.

additional_escapes Valid for shell extensions, makes sense only if term_truecolor is enabled. Is to be set
from command-line. Controls additional escaping that is needed for tmux/screen to work with terminal true
color escape codes: normally tmux/screen prevent terminal emulator from receiving these control codes thus
rendering powerline prompt colorless. Valid values: "tmux", "screen", null (default).

paths Defines additional paths which will be searched for modules when using function segment option or Vim
local_themes option. Paths defined here have priority when searching for modules.

log_file Defines path which will hold powerline logs. If not present, logging will be done to stderr.

log_level String, determines logging level. Defaults to WARNING.

4.2. References 19

Powerline, Release beta

log_format String, determines format of the log messages. Defaults to
’%(asctime)s:%(level)s:%(message)s’.

interval Number, determines time (in seconds) between checks for changed configuration. Checks are done in a
seprate thread. Use null to check for configuration changes on .render() call in main thread. Defaults to
None.

reload_config Boolean, determines whether configuration should be reloaded at all. Defaults to True.

default_top_theme String, determines which top-level theme will be used as the default. Defaults to
powerline in unicode locales and ascii in non-unicode locales. See Themes section for more details.

Extension-specific configuration

Common configuration is a subdictionary that is a value of ext key in powerline/config.json file.

colorscheme Defines the colorscheme used for this extension.

theme Defines the theme used for this extension.

top_theme Defines the top-level theme used for this extension. See Themes section for more details.

local_themes Defines themes used when certain conditions are met, e.g. for buffer-specific statuslines in
vim. Value depends on extension used. For vim it is a dictionary {matcher_name : theme_name},
where matcher_name is either matcher_module.module_attribute or module_attribute
(matcher_module defaults to powerline.matchers.vim) and module_attribute should point
to a function that returns boolean value indicating that current buffer has (not) matched conditions. There is an
exception for matcher_name though: if it is __tabline__ no functions are loaded. This special theme is
used for tabline Vim option.

For shell and ipython it is a simple {prompt_type : theme_name}, where prompt_type is a string
with no special meaning (specifically it does not refer to any Python function). Shell has continuation, and
select prompts with rather self-explanatory names, IPython has in2, out and rewrite prompts (refer to
IPython documentation for more details) while in prompt is the default.

components Determines which extension components should be enabled. This key is highly extension-specific,
here is the table of extensions and corresponding components:

Exten-
sion

Compo-
nent

Description

vim statusline Makes Vim use powerline statusline.
tabline Makes Vim use powerline tabline.

shell prompt Makes shell display powerline prompt.
tmux Makes shell report its current working directory and screen width to tmux for tmux

powerline bindings.

All components are enabled by default.

Color definitions

Location powerline/colors.json

colors Color definitions, consisting of a dict where the key is the name of the color, and the value is one of the
following:

• A cterm color index.

• A list with a cterm color index and a hex color string (e.g. [123, "aabbcc"]). This is useful for
colorschemes that use colors that aren’t available in color terminals.

20 Chapter 4. Configuration and customization

Powerline, Release beta

gradients Gradient definitions, consisting of a dict where the key is the name of the gradient, and the value is a
list containing one or two items, second item is optional:

• A list of cterm color indicies.

• A list of hex color strings.

It is expected that gradients are defined from least alert color to most alert or non-alert colors are used.

Colorschemes

Location powerline/colorschemes/name.json, powerline/colorschemes/__main__.json,
powerline/colorschemes/extension/name.json

Colorscheme files are processed in order given: definitions from each next file override those
from each previous file. It is required that either powerline/colorschemes/name.json, or
powerline/colorschemes/extension/name.json exists.

name Name of the colorscheme.

groups Segment highlighting groups, consisting of a dict where the key is the name of the highlighting group
(usually the function name for function segments), and the value is either

1. a dict that defines the foreground color, background color and attributes:

fg Foreground color. Must be defined in colors.

bg Background color. Must be defined in colors.

attrs List of attributes. Valid values are one or more of bold, italic and underline. Note that
some attributes may be unavailable in some applications or terminal emulators. If no attributes are
needed this list should be left empty.

2. a string (an alias): a name of existing group. This group’s definition will be used when this color is
requested.

mode_translations Mode-specific highlighting for extensions that support it (e.g. the vim extension). It’s an
easy way of changing a color in a specific mode. Consists of a dict where the key is the mode and the value is a
dict with the following options:

colors A dict where the key is the color to be translated in this mode, and the value is the new color. Both
the key and the value must be defined in colors.

groups Segment highlighting groups for this mode. Same syntax as the main groups option.

Themes

Location powerline/themes/top_theme.json, powerline/themes/extension/__main__.json,
powerline/themes/extension/name.json

Theme files are processed in order given: definitions from each next file override those from each previous file. It is
required that file powerline/themes/extension/name.json exists.

{top_theme} component of the file name is obtained either from top_theme extension-specific key or
from default_top_theme common configuration key. Powerline ships with the following top themes:

4.2. References 21

Powerline, Release beta

Theme Description
powerline Default powerline theme with fancy powerline symbols
powerline_unicode7 Theme with powerline dividers and unicode-7 symbols
unicode Theme without any symbols from private use area
unicode_terminus Theme containing only symbols from terminus PCF font
unicode_terminus_condensed Like above, but occupies as less space as possible
ascii Theme without any unicode characters at all

name Name of the theme.

default_module Python module where segments will be looked by default. Defaults to
powerline.segments.{ext}.

spaces Defines number of spaces just before the divider (on the right side) or just after it (on the left side). These
spaces will not be added if divider is not drawn.

use_non_breaking_spaces Determines whether non-breaking spaces should be used in place of the regular
ones. This option is needed because regular spaces are not displayed properly when using powerline with some
font configuration. Defaults to True.

Note: Unlike all other options this one is only checked once at startup using whatever theme is the default. If
this option is set in the local themes it will be ignored. This option may also be ignored in some bindings.

dividers Defines the dividers used in all Powerline extensions.

The hard dividers are used to divide segments with different background colors, while the soft dividers are
used to divide segments with the same background color.

cursor_space Space reserved for user input in shell bindings. It is measured in per cents.

cursor_columns Space reserved for user input in shell bindings. Unlike cursor_space it is measured in absolute
amout of columns.

segment_data A dict where keys are segment names or strings {module}.{function}. Used to specify
default values for various keys: after, before, contents (only for string segments if name is defined), display.

Key args (only for function and segments_list segments) is handled specially: unlike other values it is merged
with all other values, except that a single {module}.{function} key if found prevents merging all
{function} values.

When using local themes values of these keys are first searched in the segment description, then in
segment_data key of a local theme, then in segment_data key of a default theme. For the default theme
itself step 2 is obviously avoided.

Note: Top-level themes are out of equation here: they are merged before the above merging process happens.

segments A dict with a left and a right lists, consisting of segment dictionaries. Shell themes may also contain
above list of dictionaries. Each item in above list may have left and right keys like this dictionary, but
no above key. above list is used for multiline shell configurations.

left and right lists are used for segments that should be put on the left or right side in the output. Actual
mechanizm of putting segments on the left or the right depends on used renderer, but most renderers require one
to specify segment with width auto on either side to make generated line fill all of the available width.

Each segment dictionary has the following options:

type The segment type. Can be one of function (default), string or segments_list:

function The segment contents is the return value of the function defined in the function option.

List of function segments is available in Segment reference section.

22 Chapter 4. Configuration and customization

Powerline, Release beta

string A static string segment where the contents is defined in the contents option, and the highlighting
group is defined in the highlight_groups option.

segments_list Sub-list of segments. This list only allows function, segments and args options.

List of lister segments is available in Lister reference section.

name Segment name. If present allows referring to this segment in segment_data dictionary by this name. If not
string segments may not be referred there at all and function and segments_list segments may
be referred there using either {module}.{function_name} or {function_name}, whichever
will be found first. Function name is taken from function key.

Note: If present prevents function key from acting as a segment name.

function Function used to get segment contents, in format {module}.{function} or {function}.
If {module} is omitted default_module option is used.

highlight_groups Highlighting group for this segment. Consists of a prioritized list of highlighting
groups, where the first highlighting group that is available in the colorscheme is used.

Ignored for segments that have function type.

before A string which will be prepended to the segment contents.

after A string which will be appended to the segment contents.

contents Segment contents, only required for string segments.

args A dict of arguments to be passed to a function segment.

align Aligns the segments contents to the left (l), center (c) or right (r). Has no sense if width key was not
specified or if segment provides its own function for auto width handling and does not care about this
option.

width Enforces a specific width for this segment.

This segment will work as a spacer if the width is set to auto. Several spacers may be used, and the space
will be distributed equally among all the spacer segments. Spacers may have contents, either returned by
a function or a static string, and the contents can be aligned with the align property.

priority Optional segment priority. Segments with priority None (the default priority, represented by null
in json) will always be included, regardless of the width of the prompt/statusline.

If the priority is any number, the segment may be removed if the prompt/statusline width is too small for
all the segments to be rendered. A lower number means that the segment has a higher priority.

Segments are removed according to their priority, with low priority segments being removed first.

draw_hard_divider, draw_soft_divider Whether to draw a divider between this and the adjacent
segment. The adjacent segment is to the right for segments on the left side, and vice versa. Hard dividers
are used between segments with different background colors, soft ones are used between segments with
same background. Both options default to True.

draw_inner_divider Determines whether inner soft dividers are to be drawn for function segments. Only
applicable for functions returning multiple segments. Defaults to False.

exclude_modes, include_modes A list of modes where this segment will be excluded: the segment
is not included or is included in all modes, except for the modes in one of these lists respectively. If
exclude_modes is not present then it acts like an empty list (segment is not excluded from any modes).
Without include_modes it acts like a list with all possible modes (segment is included in all modes).
When there are both exclude_modes overrides include_modes.

4.2. References 23

Powerline, Release beta

exclude_function, include_function Function name in a form {name} or {module}.{name}
(in the first form {module} defaults to powerline.selectors.{ext}). Determines under which
condition specific segment will be included or excluded. By default segment is always included and never
excluded. exclude_function overrides include_function.

Note: Options exclude_/include_modes complement exclude_/include_functions: segment
will be included if it is included by either include_mode or include_function and will be ex-
cluded if it is excluded by either exclude_mode or exclude_function.

display Boolean. If false disables displaying of the segment. Defaults to True.

segments A list of subsegments.

4.2.2 Segment reference

Segments

Segments are written in Python, and the default segments provided with Powerline are located in
powerline/segments/extension.py. User-defined segments can be defined in any module in sys.path
or paths common configuration option, import is always absolute.

Segments are regular Python functions, and they may accept arguments. All arguments should have a default value
which will be used for themes that don’t provide an args dict.

More information is available in Writing segments section.

Available segments

Common segments

VCS submodule
powerline.segments.common.vcs.branch(ignore_statuses=(), status_colors=False)

Return the current VCS branch.

Parameters

• status_colors (bool) – Determines whether repository status will be used to determine high-
lighting. Default: False.

• ignore_statuses (bool) – List of statuses which will not result in repo being marked as
dirty. Most useful is setting this option to ["U"]: this will ignore repository which has just
untracked files (i.e. repository with modified, deleted or removed files will be marked as
dirty, while just untracked files will make segment show clean repository). Only applicable
if status_colors option is True.

Highlight groups used: branch_clean, branch_dirty, branch.

System properties
powerline.segments.common.sys.cpu_load_percent(interval=1, format=u’{0:.0f}%’, shut-

down_event=None, update_first=True)
Return the average CPU load as a percentage.

Requires the psutil module.

Parameters format (str) – Output format. Accepts measured CPU load as the first argument.

24 Chapter 4. Configuration and customization

Powerline, Release beta

Highlight groups used: cpu_load_percent_gradient (gradient) or cpu_load_percent.
powerline.segments.common.sys.system_load(track_cpu_count=False, threshold_bad=2,

threshold_good=1, format=u’{avg:.1f}’)
Return system load average.

Highlights using system_load_good, system_load_bad and system_load_ugly highlighting
groups, depending on the thresholds passed to the function.

Parameters

• format (str) – format string, receives avg as an argument

• threshold_good (float) – threshold for gradient level 0: any normalized load average below
this value will have this gradient level.

• threshold_bad (float) – threshold for gradient level 100: any normalized load average above
this value will have this gradient level. Load averages between threshold_good and
threshold_bad receive gradient level that indicates relative position in this interval:
(100 * (cur-good) / (bad-good)). Note: both parameters are checked against
normalized load averages.

• track_cpu_count (bool) – if True powerline will continuously poll the system to detect
changes in the number of CPUs.

Divider highlight group used: background:divider.

Highlight groups used: system_load_gradient (gradient) or system_load.

powerline.segments.common.sys.uptime(shorten_len=3, seconds_format=u’ {seconds:d}s’,
minutes_format=u’ {minutes:d}m’, hours_format=u’
{hours:d}h’, days_format=u’{days:d}d’)

Return system uptime.

Parameters

• days_format (str) – day format string, will be passed days as the argument

• hours_format (str) – hour format string, will be passed hours as the argument

• minutes_format (str) – minute format string, will be passed minutes as the argument

• seconds_format (str) – second format string, will be passed seconds as the argument

• shorten_len (int) – shorten the amount of units (days, hours, etc.) displayed

Divider highlight group used: background:divider.

Network
powerline.segments.common.net.external_ip(interval=300, query_url=u’http://ipv4.icanhazip.com/’)

Return external IP address.

Parameters query_url (str) – URI to query for IP address, should return only the IP address as a
text string

Suggested URIs:

• http://ipv4.icanhazip.com/

• http://ipv6.icanhazip.com/

• http://icanhazip.com/ (returns IPv6 address if available, else IPv4)

Divider highlight group used: background:divider.
powerline.segments.common.net.hostname(exclude_domain=False, only_if_ssh=False)

Return the current hostname.

4.2. References 25

http://ipv4.icanhazip.com/
http://ipv6.icanhazip.com/
http://icanhazip.com/

Powerline, Release beta

Parameters

• only_if_ssh (bool) – only return the hostname if currently in an SSH session

• exclude_domain (bool) – return the hostname without domain if there is one

powerline.segments.common.net.internal_ip(ipv=4, interface=u’auto’)
Return internal IP address

Requires netifaces module to work properly.

Parameters

• interface (str) – Interface on which IP will be checked. Use auto to automatically detect
interface. In this case interfaces with lower numbers will be preferred over interfaces with
similar names. Order of preference based on names:

1. eth and enp followed by number or the end of string.

2. ath, wlan and wlp followed by number or the end of string.

3. teredo followed by number or the end of string.

4. Any other interface that is not lo*.

5. lo followed by number or the end of string.

• ipv (int) – 4 or 6 for ipv4 and ipv6 respectively, depending on which IP address you need
exactly.

powerline.segments.common.net.network_load(interval=1, after_update=False, key=None,
shutdown_event=None, update_first=True,
interface=u’auto’, si_prefix=False, suf-
fix=u’B/s’, sent_format=u’UL {value:>8}’,
recv_format=u’DL {value:>8}’)

Return the network load.

Uses the psutil module if available for multi-platform compatibility, falls back to reading
/sys/class/net/interface/statistics/rx,tx_bytes.

Parameters

• interface (str) – Network interface to measure (use the special value “auto” to have power-
line try to auto-detect the network interface).

• suffix (str) – String appended to each load string.

• si_prefix (bool) – Use SI prefix, e.g. MB instead of MiB.

• recv_format (str) – Format string that determines how download speed should look like.
Receives value as argument.

• sent_format (str) – Format string that determines how upload speed should look like. Re-
ceives value as argument.

• recv_max (float) – Maximum number of received bytes per second. Is only used to compute
gradient level.

• sent_max (float) – Maximum number of sent bytes per second. Is only used to compute
gradient level.

Divider highlight group used: background:divider.

Highlight groups used: network_load_sent_gradient (gradient) or
network_load_recv_gradient (gradient) or network_load_gradient (gradient),
network_load_sent or network_load_recv or network_load.

26 Chapter 4. Configuration and customization

Powerline, Release beta

Current environment
powerline.segments.common.env.cwd(ellipsis=u’...’, use_path_separator=False,

dir_limit_depth=None, dir_shorten_len=None,
shorten_home=True)

Return the current working directory.

Returns a segment list to create a breadcrumb-like effect.

Parameters

• dir_shorten_len (int) – shorten parent directory names to this length (e.g.
/long/path/to/powerline→ /l/p/t/powerline)

• dir_limit_depth (int) – limit directory depth to this number (e.g.
/long/path/to/powerline→ · · ·/to/powerline)

• use_path_separator (bool) – Use path separator in place of soft divider.

• shorten_home (bool) – Shorten home directory to ~.

• ellipsis (str) – Specifies what to use in place of omitted directories. Use None to not show
this subsegment at all.

Divider highlight group used: cwd:divider.

Highlight groups used: cwd:current_folder or cwd. It is recommended to define all highlight groups.
powerline.segments.common.env.environment(variable=None)

Return the value of any defined environment variable

Parameters variable (string) – The environment variable to return if found

powerline.segments.common.env.user(hide_user=None)
Return the current user.

Parameters hide_user (str) – Omit showing segment for users with names equal to this string.

Highlights the user with the superuser if the effective user ID is 0.

Highlight groups used: superuser or user. It is recommended to define all highlight groups.

powerline.segments.common.env.virtualenv()
Return the name of the current Python virtualenv.

Battery
powerline.segments.common.bat.battery(empty_heart=u’O’, full_heart=u’O’, gamify=False,

steps=5, format=u’{capacity:3.0%}’)
Return battery charge status.

Parameters

• format (str) – Percent format in case gamify is False.

• steps (int) – Number of discrete steps to show between 0% and 100% capacity if gamify is
True.

• gamify (bool) – Measure in hearts (ª) instead of percentages. For full
hearts battery_full highlighting group is preferred, for empty hearts there is
battery_empty.

• full_heart (str) – Heart displayed for “full” part of battery.

• empty_heart (str) – Heart displayed for “used” part of battery. It is also displayed using
another gradient level and highlighting group, so it is OK for it to be the same as full_heart
as long as necessary highlighting groups are defined.

4.2. References 27

Powerline, Release beta

battery_gradient and battery groups are used in any case, first is preferred.

Highlight groups used: battery_full or battery_gradient (gradient) or battery,
battery_empty or battery_gradient (gradient) or battery.

Weather
powerline.segments.common.wthr.weather(interval=600, after_update=False, key=None,

shutdown_event=None, update_first=True,
location_query=None, temp_hottest=40,
temp_coldest=-30, temp_format=None, unit=u’C’,
icons=None)

Return weather from Yahoo! Weather.

Uses GeoIP lookup from http://freegeoip.net/ to automatically determine your current location. This should be
changed if you’re in a VPN or if your IP address is registered at another location.

Returns a list of colorized icon and temperature segments depending on weather conditions.

Parameters

• unit (str) – temperature unit, can be one of F, C or K

• location_query (str) – location query for your current location, e.g. oslo, norway

• icons (dict) – dict for overriding default icons, e.g. {’heavy_snow’ : u’i’}

• temp_format (str) – format string, receives temp as an argument. Should also hold unit.

• temp_coldest (float) – coldest temperature. Any temperature below it will have gradient
level equal to zero.

• temp_hottest (float) – hottest temperature. Any temperature above it will have gradient
level equal to 100. Temperatures between temp_coldest and temp_hottest receive
gradient level that indicates relative position in this interval (100 * (cur-coldest)
/ (hottest-coldest)).

Divider highlight group used: background:divider.

Highlight groups used: weather_conditions or weather, weather_temp_gradient (gradient) or
weather. Also uses weather_conditions_{condition} for all weather conditions supported by Ya-
hoo.

Date and time
powerline.segments.common.time.date(istime=False, format=u’%Y-%m-%d’)

Return the current date.

Parameters

• format (str) – strftime-style date format string

• istime (bool) – If true then segment uses time highlight group.

Divider highlight group used: time:divider.

Highlight groups used: time or date.
powerline.segments.common.time.fuzzy_time(unicode_text=False)

Display the current time as fuzzy time, e.g. “quarter past six”.

Parameters unicode_text (bool) – If true then hyphenminuses (regular ASCII -) and single quotes
are replaced with unicode dashes and apostrophes.

28 Chapter 4. Configuration and customization

http://freegeoip.net/

Powerline, Release beta

Mail
powerline.segments.common.mail.email_imap_alert(username, password, interval=60,

after_update=False, key=None,
shutdown_event=None, up-
date_first=True, folder=u’INBOX’,
port=993, server=u’imap.gmail.com’,
max_msgs=None)

Return unread e-mail count for IMAP servers.

Parameters

• username (str) – login username

• password (str) – login password

• server (str) – e-mail server

• port (int) – e-mail server port

• folder (str) – folder to check for e-mails

• max_msgs (int) – Maximum number of messages. If there are more messages then
max_msgs then it will use gradient level equal to 100, otherwise gradient level is equal
to 100 * msgs_num / max_msgs. If not present gradient is not computed.

Highlight groups used: email_alert_gradient (gradient), email_alert.

Media players
powerline.segments.common.players.clementine(state_symbols={u’fallback’: u’‘, u’pause’:

u’~’, u’stop’: u’X’, u’play’: u’>’}, for-
mat=u’{state_symbol} {artist} - {title} ({to-
tal})’)

Return clementine player information

Requires dbus python module.

This player segment should be added like this:

{
"function": "powerline.segments.common.players.clementine",
"name": "player"

}

(with additional "args": {...} if needed).

Highlight groups used: player_fallback or player, player_play or player, player_pause or
player, player_stop or player.

Parameters

• format (str) – Format used for displaying data from player. Should be a str.format-like
string with the following keyword parameters:

4.2. References 29

Powerline, Release beta

Pa-
ram-
eter

Description

state_symbolSymbol displayed for play/pause/stop states. There is also “fallback” state
used in case function failed to get player state. For this state symbol is by
default empty. All symbols are defined in state_symbols argument.

al-
bum

Album that is currently played.

artist Artist whose song is currently played
title Currently played composition.
elapsed Composition duration in format M:SS (minutes:seconds).
total Composition length in format M:SS.

• state_symbols (dict) – Symbols used for displaying state. Must contain all of the following
keys:

Key Description
play Displayed when player is playing.
pause Displayed when player is paused.
stop Displayed when player is not playing anything.
fallback Displayed if state is not one of the above or not known.

powerline.segments.common.players.cmus(state_symbols={u’fallback’: u’‘, u’pause’:
u’~’, u’stop’: u’X’, u’play’: u’>’}, for-
mat=u’{state_symbol} {artist} - {title} ({total})’)

Return CMUS player information

Requires cmus-remote command be acessible from $PATH.

This player segment should be added like this:

{
"function": "powerline.segments.common.players.cmus",
"name": "player"

}

(with additional "args": {...} if needed).

Highlight groups used: player_fallback or player, player_play or player, player_pause or
player, player_stop or player.

Parameters

• format (str) – Format used for displaying data from player. Should be a str.format-like
string with the following keyword parameters:

Pa-
ram-
eter

Description

state_symbolSymbol displayed for play/pause/stop states. There is also “fallback” state
used in case function failed to get player state. For this state symbol is by
default empty. All symbols are defined in state_symbols argument.

al-
bum

Album that is currently played.

artist Artist whose song is currently played
title Currently played composition.
elapsed Composition duration in format M:SS (minutes:seconds).
total Composition length in format M:SS.

• state_symbols (dict) – Symbols used for displaying state. Must contain all of the following
keys:

30 Chapter 4. Configuration and customization

Powerline, Release beta

Key Description
play Displayed when player is playing.
pause Displayed when player is paused.
stop Displayed when player is not playing anything.
fallback Displayed if state is not one of the above or not known.

powerline.segments.common.players.dbus_player(player_name,
state_symbols={u’fallback’: u’‘,
u’pause’: u’~’, u’stop’: u’X’, u’play’:
u’>’}, format=u’{state_symbol} {artist} -
{title} ({total})’)

Return generic dbus player state

Requires dbus python module. Only for players that support specific protocol (e.g. like spotify()
and clementine()).

This player segment should be added like this:

{
"function": "powerline.segments.common.players.dbus_player",
"name": "player"

}

(with additional "args": {...} if needed).

Highlight groups used: player_fallback or player, player_play or player, player_pause or
player, player_stop or player.

Parameters

• format (str) – Format used for displaying data from player. Should be a str.format-like
string with the following keyword parameters:

Pa-
ram-
eter

Description

state_symbolSymbol displayed for play/pause/stop states. There is also “fallback” state
used in case function failed to get player state. For this state symbol is by
default empty. All symbols are defined in state_symbols argument.

al-
bum

Album that is currently played.

artist Artist whose song is currently played
title Currently played composition.
elapsed Composition duration in format M:SS (minutes:seconds).
total Composition length in format M:SS.

• state_symbols (dict) – Symbols used for displaying state. Must contain all of the following
keys:

Key Description
play Displayed when player is playing.
pause Displayed when player is paused.
stop Displayed when player is not playing anything.
fallback Displayed if state is not one of the above or not known.

• player_name (str) – Player name. Used in error messages only.

• bus_name (str) – Dbus bus name.

• player_path (str) – Path to the player on the given bus.

• iface_prop (str) – Interface properties name for use with dbus.Interface.

4.2. References 31

Powerline, Release beta

• iface_player (str) – Player name.

powerline.segments.common.players.mpd(state_symbols={u’fallback’: u’‘, u’pause’:
u’~’, u’stop’: u’X’, u’play’: u’>’}, for-
mat=u’{state_symbol} {artist} - {title} ({total})’,
port=6600, host=u’localhost’)

Return Music Player Daemon information

Requires mpc command to be acessible from $PATH or mpd Python module.

This player segment should be added like this:

{
"function": "powerline.segments.common.players.mpd",
"name": "player"

}

(with additional "args": {...} if needed).

Highlight groups used: player_fallback or player, player_play or player, player_pause or
player, player_stop or player.

Parameters

• format (str) – Format used for displaying data from player. Should be a str.format-like
string with the following keyword parameters:

Pa-
ram-
eter

Description

state_symbolSymbol displayed for play/pause/stop states. There is also “fallback” state
used in case function failed to get player state. For this state symbol is by
default empty. All symbols are defined in state_symbols argument.

al-
bum

Album that is currently played.

artist Artist whose song is currently played
title Currently played composition.
elapsed Composition duration in format M:SS (minutes:seconds).
total Composition length in format M:SS.

• state_symbols (dict) – Symbols used for displaying state. Must contain all of the following
keys:

Key Description
play Displayed when player is playing.
pause Displayed when player is paused.
stop Displayed when player is not playing anything.
fallback Displayed if state is not one of the above or not known.

• host (str) – Host on which mpd runs.

• port (int) – Port which should be connected to.

powerline.segments.common.players.rdio(state_symbols={u’fallback’: u’‘, u’pause’:
u’~’, u’stop’: u’X’, u’play’: u’>’}, for-
mat=u’{state_symbol} {artist} - {title} ({total})’)

Return rdio player information

Requires osascript available in $PATH.

This player segment should be added like this:

32 Chapter 4. Configuration and customization

Powerline, Release beta

{
"function": "powerline.segments.common.players.rdio",
"name": "player"

}

(with additional "args": {...} if needed).

Highlight groups used: player_fallback or player, player_play or player, player_pause or
player, player_stop or player.

Parameters

• format (str) – Format used for displaying data from player. Should be a str.format-like
string with the following keyword parameters:

Pa-
ram-
eter

Description

state_symbolSymbol displayed for play/pause/stop states. There is also “fallback” state
used in case function failed to get player state. For this state symbol is by
default empty. All symbols are defined in state_symbols argument.

al-
bum

Album that is currently played.

artist Artist whose song is currently played
title Currently played composition.
elapsed Composition duration in format M:SS (minutes:seconds).
total Composition length in format M:SS.

• state_symbols (dict) – Symbols used for displaying state. Must contain all of the following
keys:

Key Description
play Displayed when player is playing.
pause Displayed when player is paused.
stop Displayed when player is not playing anything.
fallback Displayed if state is not one of the above or not known.

powerline.segments.common.players.rhythmbox(state_symbols={u’fallback’: u’‘, u’pause’:
u’~’, u’stop’: u’X’, u’play’: u’>’}, for-
mat=u’{state_symbol} {artist} - {title} ({to-
tal})’)

Return rhythmbox player information

Requires rhythmbox-client available in $PATH.

This player segment should be added like this:

{
"function": "powerline.segments.common.players.rhythmbox",
"name": "player"

}

(with additional "args": {...} if needed).

Highlight groups used: player_fallback or player, player_play or player, player_pause or
player, player_stop or player.

Parameters

• format (str) – Format used for displaying data from player. Should be a str.format-like
string with the following keyword parameters:

4.2. References 33

Powerline, Release beta

Pa-
ram-
eter

Description

state_symbolSymbol displayed for play/pause/stop states. There is also “fallback” state
used in case function failed to get player state. For this state symbol is by
default empty. All symbols are defined in state_symbols argument.

al-
bum

Album that is currently played.

artist Artist whose song is currently played
title Currently played composition.
elapsed Composition duration in format M:SS (minutes:seconds).
total Composition length in format M:SS.

• state_symbols (dict) – Symbols used for displaying state. Must contain all of the following
keys:

Key Description
play Displayed when player is playing.
pause Displayed when player is paused.
stop Displayed when player is not playing anything.
fallback Displayed if state is not one of the above or not known.

powerline.segments.common.players.spotify(state_symbols={u’fallback’: u’‘, u’pause’:
u’~’, u’stop’: u’X’, u’play’: u’>’}, for-
mat=u’{state_symbol} {artist} - {title} ({to-
tal})’)

Return spotify player information

Requires dbus python module.

This player segment should be added like this:

{
"function": "powerline.segments.common.players.spotify",
"name": "player"

}

(with additional "args": {...} if needed).

Highlight groups used: player_fallback or player, player_play or player, player_pause or
player, player_stop or player.

Parameters

• format (str) – Format used for displaying data from player. Should be a str.format-like
string with the following keyword parameters:

Pa-
ram-
eter

Description

state_symbolSymbol displayed for play/pause/stop states. There is also “fallback” state
used in case function failed to get player state. For this state symbol is by
default empty. All symbols are defined in state_symbols argument.

al-
bum

Album that is currently played.

artist Artist whose song is currently played
title Currently played composition.
elapsed Composition duration in format M:SS (minutes:seconds).
total Composition length in format M:SS.

34 Chapter 4. Configuration and customization

Powerline, Release beta

• state_symbols (dict) – Symbols used for displaying state. Must contain all of the following
keys:

Key Description
play Displayed when player is playing.
pause Displayed when player is paused.
stop Displayed when player is not playing anything.
fallback Displayed if state is not one of the above or not known.

powerline.segments.common.players.spotify_apple_script(state_symbols={u’fallback’:
u’‘, u’pause’: u’~’, u’stop’:
u’X’, u’play’: u’>’}, for-
mat=u’{state_symbol}
{artist} - {title} ({total})’)

Return spotify player information

Requires osascript available in $PATH.

This player segment should be added like this:

{
"function": "powerline.segments.common.players.spotify_apple_script",
"name": "player"

}

(with additional "args": {...} if needed).

Highlight groups used: player_fallback or player, player_play or player, player_pause or
player, player_stop or player.

Parameters

• format (str) – Format used for displaying data from player. Should be a str.format-like
string with the following keyword parameters:

Pa-
ram-
eter

Description

state_symbolSymbol displayed for play/pause/stop states. There is also “fallback” state
used in case function failed to get player state. For this state symbol is by
default empty. All symbols are defined in state_symbols argument.

al-
bum

Album that is currently played.

artist Artist whose song is currently played
title Currently played composition.
elapsed Composition duration in format M:SS (minutes:seconds).
total Composition length in format M:SS.

• state_symbols (dict) – Symbols used for displaying state. Must contain all of the following
keys:

Key Description
play Displayed when player is playing.
pause Displayed when player is paused.
stop Displayed when player is not playing anything.
fallback Displayed if state is not one of the above or not known.

powerline.segments.common.players.spotify_dbus(state_symbols={u’fallback’: u’‘,
u’pause’: u’~’, u’stop’: u’X’, u’play’:
u’>’}, format=u’{state_symbol} {artist}
- {title} ({total})’)

4.2. References 35

Powerline, Release beta

Return spotify player information

Requires dbus python module.

This player segment should be added like this:

{
"function": "powerline.segments.common.players.spotify",
"name": "player"

}

(with additional "args": {...} if needed).

Highlight groups used: player_fallback or player, player_play or player, player_pause or
player, player_stop or player.

Parameters

• format (str) – Format used for displaying data from player. Should be a str.format-like
string with the following keyword parameters:

Pa-
ram-
eter

Description

state_symbolSymbol displayed for play/pause/stop states. There is also “fallback” state
used in case function failed to get player state. For this state symbol is by
default empty. All symbols are defined in state_symbols argument.

al-
bum

Album that is currently played.

artist Artist whose song is currently played
title Currently played composition.
elapsed Composition duration in format M:SS (minutes:seconds).
total Composition length in format M:SS.

• state_symbols (dict) – Symbols used for displaying state. Must contain all of the following
keys:

Key Description
play Displayed when player is playing.
pause Displayed when player is paused.
stop Displayed when player is not playing anything.
fallback Displayed if state is not one of the above or not known.

PDB segments

powerline.segments.pdb.current_code_name()
Displays name of the code object of the current frame

powerline.segments.pdb.current_context()
Displays currently executed context name

This is similar to current_code_name(), but gives more details.

Currently it only gives module file name if code_name happens to be <module>.

powerline.segments.pdb.current_file(basename=True)
Displays current file name

Parameters basename (bool) – If true only basename is displayed.

36 Chapter 4. Configuration and customization

Powerline, Release beta

powerline.segments.pdb.current_line()
Displays line number that is next to be run

powerline.segments.pdb.stack_depth(full_stack=False)
Displays current stack depth

Result is relative to the stack depth at the time prompt was first run.

Parameters full_stack (bool) – If true then absolute depth is used.

Shell segments

powerline.segments.shell.continuation(renames={}, right_align=False,
omit_cmdsubst=True)

Display parser state.

Parameters

• omit_cmdsubst (bool) – Do not display cmdsubst parser state if it is the last one.

• right_align (bool) – Align to the right.

• renames (dict) – Rename states: {old_name : new_name}. If new_name is None
then given state is not displayed.

Highlight groups used: continuation, continuation:current.

powerline.segments.shell.cwd(ellipsis=u’...’, use_path_separator=False, dir_limit_depth=None,
dir_shorten_len=None, use_shortened_path=True)

Return the current working directory.

Returns a segment list to create a breadcrumb-like effect.

Parameters

• dir_shorten_len (int) – shorten parent directory names to this length (e.g.
/long/path/to/powerline→ /l/p/t/powerline)

• dir_limit_depth (int) – limit directory depth to this number (e.g.
/long/path/to/powerline→ · · ·/to/powerline)

• use_path_separator (bool) – Use path separator in place of soft divider.

• use_shortened_path (bool) – Use path from shortened_path --renderer-arg argu-
ment. If this argument is present shorten_home argument is ignored.

• shorten_home (bool) – Shorten home directory to ~.

• ellipsis (str) – Specifies what to use in place of omitted directories. Use None to not show
this subsegment at all.

Divider highlight group used: cwd:divider.

Highlight groups used: cwd:current_folder or cwd. It is recommended to define all highlight groups.

powerline.segments.shell.jobnum(show_zero=False)
Return the number of jobs.

Parameters show_zero (bool) – If False (default) shows nothing if there are no jobs. Otherwise
shows zero for no jobs.

powerline.segments.shell.last_pipe_status()
Return last pipe status.

Highlight groups used: exit_fail, exit_success

4.2. References 37

Powerline, Release beta

powerline.segments.shell.last_status()
Return last exit code.

Highlight groups used: exit_fail

powerline.segments.shell.mode(default=None, override={u’vicmd’: u’COMMND’, u’viins’:
u’INSERT’})

Return the current mode.

Parameters

• override (dict) – dict for overriding mode strings.

• default (str) – If current mode is equal to this string then this segment will not get displayed.
If not specified the value is taken from $POWERLINE_DEFAULT_MODE variable. This
variable is set by zsh bindings for any mode that does not start from vi.

Tmux segments

powerline.segments.tmux.attached_clients(minimum=1)
Return the number of tmux clients attached to the currently active session

Parameters minimum (int) – The minimum number of attached clients that must be present for this
segment to be visible.

Vim segments

powerline.segments.vim.branch(ignore_statuses=(), status_colors=False)
Return the current working branch.

Parameters

• status_colors (bool) – Determines whether repository status will be used to determine high-
lighting. Default: False.

• ignore_statuses (bool) – List of statuses which will not result in repo being marked as
dirty. Most useful is setting this option to ["U"]: this will ignore repository which has just
untracked files (i.e. repository with modified, deleted or removed files will be marked as
dirty, while just untracked files will make segment show clean repository). Only applicable
if status_colors option is True.

Highlight groups used: branch_clean, branch_dirty, branch.

Divider highlight group used: branch:divider.

powerline.segments.vim.bufnr(show_current=True)
Show buffer number

Parameters show_current (bool) – If False do not show current window number.

powerline.segments.vim.col_current()
Return the current cursor column.

powerline.segments.vim.csv_col_current(name_format=u’ ({column_name:.15})’, dis-
play_name=u’auto’)

Display CSV column number and column name

Requires filetype to be set to csv.

Parameters

38 Chapter 4. Configuration and customization

Powerline, Release beta

• or str name (bool) – May be True, False and "auto". In the first case value from
the first raw will always be displayed. In the second case it will never be displayed. In thi
last case csv.Sniffer().has_header() will be used to detect whether current file
contains header in the first column.

• name_format (str) – String used to format column name (in case display_name is set
to True or "auto"). Accepts column_name keyword argument.

Highlight groups used: csv:column_number or csv, csv:column_name or csv.

powerline.segments.vim.file_directory(shorten_home=False, shorten_cwd=True,
shorten_user=True, remove_scheme=True)

Return file directory (head component of the file path).

Parameters

• remove_scheme (bool) – Remove scheme part from the segment name, if present. See
documentation of file_scheme segment for the description of what scheme is. Also removes
the colon.

• shorten_user (bool) – Shorten $HOME directory to ~/. Does not work for files with scheme.

• shorten_cwd (bool) – Shorten current directory to ./. Does not work for files with scheme
present.

• shorten_home (bool) – Shorten all directories in /home/ to ~user/ instead of
/home/user/. Does not work for files with scheme present.

powerline.segments.vim.file_encoding(segment_info)
Return file encoding/character set.

Returns file encoding/character set or None if unknown or missing file encoding

Divider highlight group used: background:divider.

powerline.segments.vim.file_format(segment_info)
Return file format (i.e. line ending type).

Returns file format or None if unknown or missing file format

Divider highlight group used: background:divider.

powerline.segments.vim.file_name(no_file_text=u’[No file]’, display_no_file=False)
Return file name (tail component of the file path).

Parameters

• display_no_file (bool) – display a string if the buffer is missing a file name

• no_file_text (str) – the string to display if the buffer is missing a file name

Highlight groups used: file_name_no_file or file_name, file_name.

powerline.segments.vim.file_scheme()
Return the protocol part of the file.

Protocol is the part of the full filename just before the colon which starts with a latin letter and contains only
latin letters, digits, plus, period or hyphen (refer to RFC39862 for the description of URI scheme). If there is no
such a thing None is returned, effectively removing segment.

Note: Segment will not check whether there is // just after the colon or if there is at least one slash after the
scheme. Reason: it is not always present. E.g. when opening file inside a zip archive file name will look like

2http://tools.ietf.org/html/rfc3986#section-3.1

4.2. References 39

http://tools.ietf.org/html/rfc3986#section-3.1

Powerline, Release beta

zipfile:/path/to/archive.zip::file.txt. file_scheme segment will catch zipfile part
here.

powerline.segments.vim.file_size(si_prefix=False, suffix=u’B’)
Return file size in &encoding.

Parameters

• suffix (str) – string appended to the file size

• si_prefix (bool) – use SI prefix, e.g. MB instead of MiB

Returns file size or None if the file isn’t saved or if the size is too big to fit in a number

powerline.segments.vim.file_type(segment_info)
Return file type.

Returns file type or None if unknown file type

Divider highlight group used: background:divider.

powerline.segments.vim.file_vcs_status()
Return the VCS status for this buffer.

Highlight groups used: file_vcs_status.

powerline.segments.vim.line_count()
Return the line count of the current buffer.

powerline.segments.vim.line_current()
Return the current cursor line.

powerline.segments.vim.line_percent(gradient=False)
Return the cursor position in the file as a percentage.

Parameters gradient (bool) – highlight the percentage with a color gradient (by default a green to
red gradient)

Highlight groups used: line_percent_gradient (gradient), line_percent.

powerline.segments.vim.mode(override=None)
Return the current vim mode.

Parameters override (dict) – dict for overriding default mode strings, e.g. { ’n’: ’NORM’ }

powerline.segments.vim.modified_buffers(join_str=u’, ‘, text=u’+ ‘)
Return a comma-separated list of modified buffers.

Parameters

• text (str) – text to display before the modified buffer list

• join_str (str) – string to use for joining the modified buffer list

powerline.segments.vim.modified_indicator(text=u’+’)
Return a file modified indicator.

Parameters text (string) – text to display if the current buffer is modified

powerline.segments.vim.paste_indicator(text=u’PASTE’)
Return a paste mode indicator.

Parameters text (string) – text to display if paste mode is enabled

40 Chapter 4. Configuration and customization

Powerline, Release beta

powerline.segments.vim.position(gradient=False, position_strings={u’top’: u’Top’, u’all’:
u’All’, u’bottom’: u’Bot’})

Return the position of the current view in the file as a percentage.

Parameters

• position_strings (dict) – dict for translation of the position strings, e.g.
{"top":"Oben", "bottom":"Unten", "all":"Alles"}

• gradient (bool) – highlight the percentage with a color gradient (by default a green to red
gradient)

Highlight groups used: position_gradient (gradient), position.

powerline.segments.vim.readonly_indicator(text=u’RO’)
Return a read-only indicator.

Parameters text (string) – text to display if the current buffer is read-only

powerline.segments.vim.tab_modified_indicator(text=u’+’)
Return a file modified indicator for tabpages.

Parameters text (string) – text to display if any buffer in the current tab is modified

Highlight groups used: tab_modified_indicator or modified_indicator.

powerline.segments.vim.tabnr(show_current=True)
Show tabpage number

Parameters show_current (bool) – If False do not show current tabpage number. This is default
because tabnr is by default only present in tabline.

powerline.segments.vim.trailing_whitespace()
Return the line number for trailing whitespaces

It is advised not to use this segment in insert mode: in Insert mode it will iterate over all lines in buffer each
time you happen to type a character which may cause lags. It will also show you whitespace warning each time
you happen to type space.

Highlight groups used: trailing_whitespace or warning.

powerline.segments.vim.virtcol_current(gradient=True)
Return current visual column with concealed characters ingored

Parameters gradient (bool) – Determines whether it should show textwidth-based gradient (gradi-
ent level is virtcol * 100 / textwidth).

Highlight groups used: virtcol_current_gradient (gradient), virtcol_current or
col_current.

powerline.segments.vim.visual_range(V_text=u’L:{rows}’, v_text_multiline=u’L:{rows}’,
v_text_oneline=u’C:{vcols}’, CTRL_V_text=u’{rows} x
{vcols}’)

Return the current visual selection range.

Parameters

• CTRL_V_text (str) – Text to display when in block visual or select mode.

• v_text_oneline (str) – Text to display when in charaterwise visual or select mode, assuming
selection occupies only one line.

• v_text_multiline (str) – Text to display when in charaterwise visual or select mode, assum-
ing selection occupies more then one line.

• V_text (str) – Text to display when in linewise visual or select mode.

4.2. References 41

Powerline, Release beta

All texts are format strings which are passed the following parameters:

Parameter Description
sline Line number of the first line of the selection
eline Line number of the last line of the selection
scol Column number of the first character of the selection
ecol Column number of the last character of the selection
svcol Virtual column number of the first character of the selection
secol Virtual column number of the last character of the selection
rows Number of lines in the selection
cols Number of columns in the selection
vcols Number of virtual columns in the selection

powerline.segments.vim.window_title()
Return the window title.

This currently looks at the quickfix_title window variable, which is used by Syntastic and Vim itself.

It is used in the quickfix theme.

powerline.segments.vim.winnr(show_current=True)
Show window number

Parameters show_current (bool) – If False do not show current window number.

Plugin-specific segments

Syntastic segments
powerline.segments.vim.plugin.syntastic.syntastic(warn_format=u’WARN:

\ue0a1 {first_line} ({num})
‘, err_format=u’ERR: \ue0a1
{first_line} ({num}) ‘)

Show whether syntastic has found any errors or warnings

Parameters

• err_format (str) – Format string for errors.

• warn_format (str) – Format string for warnings.

Highlight groups used: syntastic:warning or warning, syntastic:error or error.

Command-T segments
powerline.segments.vim.plugin.commandt.finder()

Display Command-T finder name

Requires $command_t.active_finder and methods (code above may monkey-patch $command_t to add them).
All Command-T finders have CommandT:: module prefix, but it is stripped out (actually, any CommandT::
substring will be stripped out).

Highlight groups used: commandt:finder.
powerline.segments.vim.plugin.commandt.path()

Display path used by Command-T

Requires $command_t.active_finder and .path methods (code above may monkey-patch $command_t to add
them).

$command_t.active_finder is required in order to omit displaying path for finders MRUBufferFinder,
BufferFinder, TagFinder and JumpFinder (pretty much any finder, except FileFinder).

42 Chapter 4. Configuration and customization

Powerline, Release beta

Highlight groups used: commandt:path.

Tagbar segments
powerline.segments.vim.plugin.tagbar.current_tag(flags=u’s’)

Return tag that is near the cursor.

Parameters flags (str) – Specifies additional properties of the displayed tag. Supported values:

• s - display complete signature

• f - display the full hierarchy of the tag

• p - display the raw prototype

More info in the official documentation3 (search for “tagbar#currenttag”).

NERDTree segments
powerline.segments.vim.plugin.nerdtree.nerdtree()

Return directory that is shown by the current buffer.

Highlight groups used: nerdtree:path or file_name.

Capslock segments
powerline.segments.vim.plugin.capslock.capslock_indicator(text=u’CAPS’)

Shows the indicator if tpope/vim-capslock plugin is enabled

Note: In the current state plugin automatically disables itself when leaving insert mode. So trying to use this
segment not in insert or replace modes is useless.

Parameters text (str) – String to show when software capslock presented by this plugin is active.

4.2.3 Lister reference

Listers are special segment collections which allow to show some list of segments for each entity in the list of entities
(multiply their segments list by a list of entities). E.g. powerline.listers.vim.tablister presented with
powerline.segments.vim.tabnr andfile_name as segments will emit segments with buffer names
and tabpage numbers for each tabpage shown by vim.

Listers appear in configuration as irregular segments having segment_list as their type and segments key with
a list of segments (a bit more details in Themes section of configuration reference).

More information in Writing listers section.

Currently only Vim listers are available.

Vim listers

powerline.listers.vim.bufferlister(show_unlisted=False)
List all buffers in segment_info format

Specifically generates a list of segment info dictionaries with buffer and bufnr keys set to buffer-specific
ones, window, winnr and window_id keys set to None.

Adds either buf: or buf_nc: prefix to all segment highlight groups.

3https://github.com/majutsushi/tagbar/blob/master/doc/tagbar.txt

4.2. References 43

https://github.com/majutsushi/tagbar/blob/master/doc/tagbar.txt

Powerline, Release beta

Parameters show_unlisted (bool) – True if unlisted buffers should be shown as well. Current buffer
is always shown.

powerline.listers.vim.tablister()
List all tab pages in segment_info format

Specifically generates a list of segment info dictionaries with window, winnr, window_id, buffer and
bufnr keys set to tab-local ones and additional tabpage and tabnr keys.

Adds either tab: or tab_nc: prefix to all segment highlight groups.

Works best with vim-7.4 or later: earlier versions miss tabpage object and thus window objects are not available
as well.

Pdb listers

powerline.listers.pdb.frame_lister(maxframes=3, full_stack=False)
List all frames in segment_info format

Parameters

• full_stack (bool) – If true, then all frames in the stack are listed. Normally N first frames
are discarded where N is a number of frames present at the first invocation of the prompt
minus one.

• maxframes (int) – Maximum number of frames to display.

4.2.4 Selector functions

Selector functions are functions that return True or False depending on application state. They are used for ex-
clude_function and include_function segment options.

Available selectors

Vim selectors

powerline.selectors.vim.single_tab(segment_info, mode)
Returns True if Vim has only one tab opened

4.2.5 Local configuration overrides

Depending on the application used it is possible to override configuration. Here is the list:

Vim overrides

Vim configuration can be overridden using the following options:

g:powerline_config_overrides Dictionary, recursively merged with contents of
powerline/config.json.

g:powerline_theme_overrides Dictionary mapping theme names to theme overrides, recursively merged
with contents of powerline/themes/vim/key.json. Note that this way some value (e.g. segment) in a
list cannot be redefined, only the whole list itself: only dictionaries are merged recursively.

44 Chapter 4. Configuration and customization

Powerline, Release beta

g:powerline_config_paths Paths list (each path must be expanded, ~ shortcut is not supported). Points to
the list of directories which will be searched for configuration. When this option is present, none of the other
locations are searched.

g:powerline_no_python_error If this variable is set to a true value it will prevent Powerline from reporting
an error when loaded in a copy of vim without the necessary Python support.

g:powerline_use_var_handler This variable may be set to either 0 or 1. If it is set to 1 then Vim will save
log in g:powerline_log_messages variable in addition to whatever was configured in log_* options.
Level is always log_level, same for format.

Powerline script overrides

Powerline script has a number of options controlling powerline behavior. Here VALUE always means “some JSON
object”.

-c KEY.NESTED_KEY=VALUE or --config-override=KEY.NESTED_KEY=VALUE Overrides options
from powerline/config.json. KEY.KEY2.KEY3=VALUE is a shortcut for KEY={"KEY2":
{"KEY3": VALUE}}. Multiple options (i.e. -c K1=V1 -c K2=V2) are allowed, result (in the example:
{"K1": V1, "K2": V2}) is recursively merged with the contents of the file.

If VALUE is omitted then corresponding key will be removed from the configuration (if it was present).

-t THEME_NAME.KEY.NESTED_KEY=VALUE or --theme-override=THEME_NAME.KEY.NESTED_KEY=VALUE
Overrides options from powerline/themes/ext/THEME_NAME.json. KEY.NESTED_KEY=VALUE
is processed like described above, {ext} is the first argument to powerline script. May be passed multiple
times.

If VALUE is omitted then corresponding key will be removed from the configuration (if it was present).

-p PATH or --config-path=PATH Sets directory where configuration should be read from. If present, no de-
fault locations are searched for configuration. No expansions are performed by powerline script itself, but -p
~/.powerline will likely be expanded by the shell to something like -p /home/user/.powerline.

Warning: Such overrides are suggested for testing purposes only. Use Environment variables overrides for other
purposes.

Environment variables overrides

All bindings that use POWERLINE_COMMAND environment variable support taking overrides from environment vari-
ables. In this case overrides should look like the following:

OVERRIDE=’key1.key2.key3=value;key4.key5={"value":1};key6=true;key1.key7=10’

. This will be parsed into

{
"key1": {

"key2": {
"key3": "value"

},
"key7": 10,

},
"key4": {

"key5": {
"value": 1,

},

4.2. References 45

Powerline, Release beta

},
"key6": True,

}

. Rules:

1. Environment variable must form a semicolon-separated list of key-value pairs: key=value;key2=value2.

2. Keys are always dot-separated strings that must not contain equals sign (as well as semicolon) or start with
an underscore. They are interpreted literally and create a nested set of dictionaries: k1.k2.k3 creates
{"k1":{"k2":{}}} and inside the innermost dictionary last key (k3 in the example) is contained with
its value.

3. Value may be empty in which case they are interpreted as an order to remove some value: k1.k2= will
form {"k1":{"k2":REMOVE_THIS_KEY}} nested dictionary where k2 value is a special value that tells
dictionary-merging function to remove k2 rather then replace it with something.

4. Value may be a JSON strings like {"a":1} (JSON dictionary), ["a",1] (JSON list), 1 or -1 (JSON number),
"abc" (JSON string) or true, false and null (JSON boolean objects and Null object from JSON).
General rule is that anything starting with a digit (U+0030 till U+0039, inclusive), a hyphenminus (U+002D), a
quotation mark (U+0022), a left curly bracket (U+007B) or a left square bracket (U+005B) is considered to be
some JSON object, same for exact values true, false and null.

5. Any other value is considered to be literal string: k1=foo:bar parses to {"k1": "foo:bar"}.

The following environment variables may be used for overrides according to the above rules:

POWERLINE_CONFIG_OVERRIDES Overrides values from powerline/config.json.

POWERLINE_THEME_OVERRIDES Overrides values from powerline/themes/ext/key.json. Top-level
key is treated as a name of the theme for which overrides are used: e.g. to disable cwd segment defined in
powerline/themes/shell/default.json one needs to use:

POWERLINE_THEME_OVERRIDES=default.segment_data.cwd.display=false

Additionally one environment variable is a usual colon-separated list of directories: POWERLINE_CONFIG_PATHS.
This one defines paths which will be searched for configuration. Empty paths in POWERLINE_CONFIG_PATHS are
ignored.

Note: Overrides from environment variables have lower priority then Powerline script overrides. Latter are suggested
for tests only.

Zsh/zpython overrides

Here overrides are controlled by similarly to the powerline script, but values are taken from zsh variables. Environment
variable overrides are also supported: if variable is a string this variant is used.

POWERLINE_CONFIG_OVERRIDES Overrides options from powerline/config.json. Should be a zsh as-
sociative array with keys equal to KEY.NESTED_KEY and values being JSON strings. Pair KEY.KEY1
VALUE is equivalent to {"KEY": {"KEY1": VALUE}}. All pairs are then recursively merged into one
dictionary and this dictionary is recursively merged with the contents of the file.

POWERLINE_THEME_OVERRIDES Overrides options from powerline/themes/shell/*.json. Should be
a zsh associative array with keys equal to THEME_NAME.KEY.NESTED_KEY and values being JSON strings.
Is processed like the above POWERLINE_CONFIG_OVERRIDES, but only subdictionaries for THEME_NAME
key are merged with theme configuration when theme with given name is requested.

POWERLINE_CONFIG_PATHS Sets directories where configuration should be read from. If present,
no default locations are searched for configuration. No expansions are performed by powerline

46 Chapter 4. Configuration and customization

Powerline, Release beta

script itself, but zsh usually performs them on its own if variable without is set without quotes:
POWERLINE_CONFIG_PATHS=(~/example). In addition to arrays usual colon-separated “array” string
can be used: POWERLINE_CONFIG_PATHS=$HOME/path1:$HOME/path2.

Ipython overrides

Ipython overrides depend on ipython version. Before ipython-0.11 additional keyword arguments should be passed
to setup() function. After ipython-0.11 c.Powerline.KEY should be used. Supported KEY strings or keyword
argument names:

config_overrides Overrides options from powerline/config.json. Should be a dictionary that will be
recursively merged with the contents of the file.

theme_overrides Overrides options from powerline/themes/ipython/*.json. Should be a dictionary
where keys are theme names and values are dictionaries which will be recursively merged with the contents of
the given theme.

config_paths Sets directories where configuration should be read from. If present, no default locations are
searched for configuration. No expansions are performed thus paths starting with ~/ cannot be used: use
os.path.expanduser().

Prompt command

In addition to the above configuration options $POWERLINE_COMMAND environment variable can be used to tell shell
or tmux to use specific powerline implementation and $POWERLINE_CONFIG_COMMAND to tell zsh or tmux where
powerline-config script is located. This is mostly useful for putting powerline into different directory.

Note: $POWERLINE_COMMAND is always treated as one path in shell bindings, so path with spaces in it may be used.
To specify additional arguments one may use $POWERLINE_COMMAND_ARGS, but note that this variable exists for
testing purposes only and may be removed. One should use Environment variable overrides instead.

To disable prompt in shell, but still have tmux support or to disable tmux support environment variables
$POWERLINE_NO_{SHELL}_PROMPT and $POWERLINE_NO_{SHELL}_TMUX_SUPPORT can be used (sub-
stitute {SHELL} with the name of the shell (all-caps) that should be affected (e.g. BASH) or use all-inclusive SHELL
that will disable support for all shells). These variables have no effect after configuration script was sourced (in fish
case: after powerline-setup function was run). To disable specific feature support set one of these variables to
some non-empty value.

In order to keep shell prompt, but avoid launching Python twice to get unused above lines in tcsh
$POWERLINE_NO_TCSH_ABOVE or $POWERLINE_NO_SHELL_ABOVE variable should be set.

In order to remove additional space from the end of the right prompt in fish that was added in order to support multiline
prompt $POWERLINE_NO_FISH_ABOVE or $POWERLINE_NO_SHELL_ABOVE variable should be set.

PDB overrides

Like shell bindings PDB bindings take overrides from environment variables.

4.2. References 47

Powerline, Release beta

48 Chapter 4. Configuration and customization

CHAPTER 5

Developer guide

5.1 Writing segments

Each powerline segment is a callable object. It is supposed to be either a Python function or
powerline.segments.Segment class. As a callable object it should receive the following arguments:

Note: All received arguments are keyword arguments.

pl A powerline.PowerlineLogger instance. It must be used every time something needs to be logged.

segment_info A dictionary. It is only received if callable has powerline_requires_segment_info at-
tribute.

Refer to segment_info detailed description for further details.

create_watcher Function that will create filesystem watcher once called. Which watcher will be created exactly
is controlled by watcher configuration option.

And also any other argument(s) specified by user in args key (no additional arguments by default).

Note: For powerline-lint to work properly the following things may be needed:

1. If segment is a powerline.segments.Segment instance and used arguments are scattered over multiple
methods powerline.segments.Segment.argspecobjs() should be overridden in subclass to tell
powerline-lint which objects should be inspected for arguments.

2. If segment takes some arguments that are never listed, but accessed via kwargs.get() or previous function
cannot be used for whatever reason powerline.segments.Segment.additional_args() should
be overridden in subclass.

3. If user is expected to use one name for multiple segments which cannot be linked to the segment function
automatically by powerline-lint (e.g. because there are no instances of the segments in question in the default
configuration) powerline.lint.checks.register_common_name() function should be used.

Object representing segment may have the following attributes used by powerline:

powerline_requires_segment_info This attribute controls whether segment will receive segment_info
argument: if it is present argument will be received.

powerline_requires_filesystem_watcher This attribute controls whether segment will receive
create_watcher argument: if it is present argument will be received.

powerline_segment_datas This attribute must be a dictionary containing top_theme: segment_data
mapping where top_theme is any theme name (it is expected that all of the names from top-level themes list

49

Powerline, Release beta

are present) and segment_data is a dictionary like the one that is contained inside segment_data dictionary
in configuration. This attribute should be used to specify default theme-specific values for third-party segments:
powerline theme-specific values go directly to top-level themes.

startup This attribute must be a callable which accepts the following keyword arguments:

• pl: powerline.PowerlineLogger instance which is to be used for logging.

• shutdown_event: Event object which will be set when powerline will be shut down.

• Any arguments found in user configuration for the given segment (i.e. args key).

This function is called at powerline startup when using long-running processes (e.g. powerline in vim, in zsh
with libzpython, in ipython or in powerline daemon) and not called when powerline-render executable is
used (more specific: when powerline.Powerline constructor received true run_once argument).

shutdown This attribute must be a callable that accepts no arguments and shuts down threads and frees any other
resources allocated in startup method of the segment in question.

This function is not called when startup method is not called.

expand This attribute must be a callable that accepts the following keyword arguments:

• pl: powerline.PowerlineLogger instance which is to be used for logging.

• amount: integer number representing amount of display cells result must occupy.

Warning: “Amount of display cells” is not number of Unicode codepoints, string length, or byte
count. It is suggested that this function should look something like return (’ ’ * amount)
+ segment[’contents’] where ’ ’ may be replaced with anything that is known to occupy
exactly one display cell.

• segment: segment dictionary.

• Any arguments found in user configuration for the given segment (i.e. args key).

It must return new value of contents key.

truncate Like expand function, but for truncating segments. Here amount means the number of display cells
which must be freed.

This function is called for all segments before powerline starts purging them to free space.

This callable object should may return either a string (unicode in Python2 or str in Python3, not str in Python2
or bytes in Python3) object or a list of dictionaries. String object is a short form of the following return value:

[{
’contents’: original_return,
’highlight_groups’: [segment_name],

}]

Returned list is a list of segments treated independently, except for draw_inner_divider key.

All keys in segments returned by the function override those obtained from configuration and have the same meaning.

Detailed description of used dictionary keys:

contents Text displayed by segment. Should be a unicode (Python2) or str (Python3) instance.

draw_hard_divider, draw_soft_divider, draw_inner_divider Determines whether given divider
should be drawn. All have the same meaning as the similar keys in configuration (draw_inner_divider).

highlight_groups Determines segment highlighting. Refer to themes documentation for more details.

Defaults to the name of the segment.

50 Chapter 5. Developer guide

Powerline, Release beta

Note: If target is inclusion of the segment in powerline upstream all used highlighting groups must be specified
in the segment documentation in the form:

Highlight groups used: ‘‘g1‘‘[or ‘‘g2‘‘]*[, ‘‘g3‘‘ (gradient)[or ‘‘g4‘‘]*]*.

I.e. use:

Highlight groups used: ‘‘foo_gradient‘‘ (gradient) or ‘‘foo‘‘, ‘‘bar‘‘.

to specify that the segment uses either foo_gradient group or foo group and bar group meaning that
powerline-lint will check that at least one of the first two groups is defined (and if foo_gradient is
defined it must use at least one gradient color) and third group is defined as well.

All groups must be specified on one line.

divider_highlight_group Determines segment divider highlight group. Only applicable for soft dividers:
colors for hard dividers are determined by colors of adjacent segments.

Note: If target is inclusion of the segment in powerline upstream used divider highlight group must be specified
in the segment documentation in the form:

Divider highlight group used: ‘‘group‘‘.

This text must not wrap and all divider highlight group names are
supposed to end with ‘‘:divider‘‘: e.g. ‘‘cwd:divider‘‘.

gradient_level First and the only key that may not be specified in user configuration. It determines which color
should be used for this segment when one of the highlighting groups specified by highlight_groups was defined
to use the color gradient.

This key may have any value from 0 to 100 inclusive, value is supposed to be an int or float instance.

No error occurs if segment has this key, but no used highlight groups use gradient color.

_* Keys starting with underscore are reserved for powerline and must not be returned.

__* Keys starting with two underscores are reserved for the segment functions, specifically for expand function.

5.1.1 Segment dictionary

Segment dictionary contains the following keys:

• All keys returned by segment function (if it was used).

• All of the following keys:

name Segment name: value of the name key or function name (last component of the function key). May be
None.

type Segment type. Always represents actual type and is never None.

highlight_groups, divider_highlight_group Used highlight groups. May be None.

highlight_group_prefix If this key is present then given prefix will be prepended to each highlight
group (both regular and divider) used by this segment in a form {prefix}:{group} (note the colon).
This key is mostly useful for segment listers.

before, after Value of before or after configuration options. May be None as well as an empty string.

contents_func Function used to get segment contents. May be None.

5.1. Writing segments 51

Powerline, Release beta

contents Actual segment contents, excluding dividers and before/after. May be None.

priority Segment priority. May be None for no priority (such segments are always shown).

draw_soft_divider, draw_hard_divider, draw_inner_divider Divider control flags.

side Segment side: right or left.

display_condition‘ Contains function that takes three position parameters:
powerline.PowerlineLogger instance, segment_info dictionary and current mode and returns
either True or False to indicate whether particular segment should be processed.

This key is constructed based on exclude_/include_modes keys and exclude_/include_function keys.

width, align Width and align options. May be None.

expand, truncate Partially applied expand or truncate function. Accepts pl, amount and segment
positional parameters, keyword parameters from args key were applied.

startup Partially applied startup function. Accepts pl and shutdown_event positional parameters, key-
word parameters from args key were applied.

shutdown Shutdown function. Accepts no argument.

5.1.2 Segments layout

Powerline segments are all located in one of the powerline.segments submodules. For extension-specific
segments powerline.segments.{ext} module should be used (e.g. powerline.segments.shell), for
extension-agnostic there is powerline.segments.common.

Plugin-specific segments (currently only those that are specific to vim plugins)
should live in powerline.segments.{ext}.plugin.{plugin_name}: e.g.
powerline.segments.vim.plugin.gundo.

5.1.3 Segment information used in various extensions

Each segment_info value should be a dictionary with at least the following keys:

environ Current environment, may be an alias to os.environ. Is guaranteed to have __getitem__ and get
methods and nothing more.

Warning: os.environ must not ever be used:
• If segment is run in the daemon this way it will get daemon’s environment which is not correct.
• If segment is run in Vim or in zsh with libzpython os.environ will contain Vim or zsh environ at

the moment Python interpreter was loaded.

getcwd Function that returns current working directory being called with no arguments. os.getcwd must not be
used for the same reasons the use of os.environ is forbidden, except that current working directory is valid
in Vim and zsh (but not in daemon).

home Current home directory. May be false.

Vim

Vim segment_info argument is a dictionary with the following keys:

window vim.Window object. vim.current.window or vim.windows[number - 1] may be used to
obtain such object. May be a false object, in which case any of this object’s properties must not be used.

52 Chapter 5. Developer guide

Powerline, Release beta

winnr Window number. Same as segment_info[’window’].number assuming Vim is new enough for
vim.Window object to have number attribute.

window_id Internal powerline window id, unique for each newly created window. It is safe to assume that this ID
is hashable and supports equality comparison, but no other assumptions about it should be used. Currently uses
integer numbers incremented each time window is created.

buffer vim.Buffer object. One may be obtained using vim.current.buffer,
segment_info[’window’].buffer or vim.buffers[some_number]. Note that in the latter
case depending on vim version some_number may be bufnr or the internal Vim buffer index which is not
buffer number. For this reason to get vim.Buffer object other then stored in segment_info dictionary
iteration over vim.buffers and checking their number attributes should be performed.

bufnr Buffer number.

tabpage vim.Tabpage object. One may be obtained using vim.current.tabpage or
vim.tabpages[number - 1]. May be a false object, in which case no object’s properties can be
used.

tabnr Tabpage number.

mode Current mode.

encoding Value of &encoding from the time when powerline was initialized. It should be used to convert return
values.

Note: Segment generally should not assume that it is run for the current window, current buffer or current tabpage.
“Current window” and “current buffer” restrictions may be ignored if window_cached decorator is used, “current
tabpage” restriction may be safely ignored if segment is not supposed to be used in tabline.

Warning: Powerline is being tested with vim-7.0.112 (some minor sanity check) and latest Vim. This means that
most of the functionality like vim.Window.number, vim.*.vars, vim.*.options or even dir(vim
object) should be avoided in segments that want to be included in the upstream.

Shell

args Parsed shell arguments: a argparse.Namespace object. Check out powerline-render --help for
the list of all available arguments. Currently it is expected to contain at least the following attributes:

last_exit_code Exit code returned by last shell command. Is either one integer, sig{name} or
sig{name}+core (latter two are only seen in rc shell).

last_pipe_status List of exit codes returned by last programs in the pipe or some false object. Only
available in zsh and rc. Is a list of either integers, sig{name} or sig{name}+core (latter two are
only seen in rc shell).

jobnum Number of background jobs.

renderer_arg Dictionary containing some keys that are additional arguments used by shell bindings. This
attribute must not be used directly: all arguments from this dictionary are merged with segment_info
dictionary. Known to have at least the following keys:

client_id Identifier unique to one shell instance. Is used to record instance state by powerline daemon.

It is not guaranteed that existing client ID will not be retaken when old shell with this ID quit: usually
process PID is used as a client ID.

It is also not guaranteed that client ID will be process PID, number or something else at all. It is
guaranteed though that client ID will be some hashable object which supports equality comparison.

5.1. Writing segments 53

Powerline, Release beta

local_theme Local theme that will be used by shell. One should not rely on the existence of this key.

Other keys, if any, are specific to segments.

Ipython

ipython Some object which has prompt_count attribute. Currently it is guaranteed to have only this attribute.

Attribute prompt_count contains the so-called “history count” (equivalent to \N in in_template).

Pdb

pdb Currently active pdb.Pdb instance.

curframe Frame which will be run next. Note: due to the exis-
tence of powerline.listers.pdb.frame_lister() one must not use
segment_info[’pdb’].curframe.

initial_stack_length Equal to the length of pdb.Pdb.stack at the first invocation of the prompt decre-
mented by one.

5.1.4 Segment class

class powerline.segments.Segment
Base class for any segment that is not a function

Required for powerline.lint.inspect to work properly: it defines methods for omitting existing or adding new
arguments.

Note: Until python-3.4 inspect.getargspec does not support querying callable classes for argu-
ments of their __call__ method, requiring to use this method directly (i.e. before 3.4 you should write
getargspec(obj.__call__) in place of getargspec(obj)).

static additional_args()
Returns a list of (additional argument name[, default value]) tuples.

argspecobjs()
Return a list of valid arguments for inspect.getargspec

Used to determine function arguments.

omitted_args(name, method)
List arguments which should be omitted

Returns a tuple with indexes of omitted arguments.

5.1.5 PowerlineLogger class

class powerline.PowerlineLogger(use_daemon_threads, logger, ext)
Proxy class for logging.Logger instance

It emits messages in format {ext}:{prefix}:{message} where

{ext} is a used powerline extension (e.g. “vim”, “shell”, “ipython”).

{prefix} is a local prefix, usually a segment name.

54 Chapter 5. Developer guide

Powerline, Release beta

{message} is the original message passed to one of the logging methods.

Each of the methods (critical, exception, info, error, warn, debug) expects to receive message in
an str.format format, not in printf-like format.

Log is saved to the location specified by user.

critical(msg, *args, **kwargs)

debug(msg, *args, **kwargs)

error(msg, *args, **kwargs)

exception(msg, *args, **kwargs)

info(msg, *args, **kwargs)

warn(msg, *args, **kwargs)

5.2 Writing listers

Listers provide a way to show some segments multiple times: once per each entity (buffer, tabpage, etc) lister knows.
They are functions which receive the following arguments:

pl A powerline.PowerlineLogger class instance. It must be used for logging.

segment_info Base segment info dictionary. Lister function or class must have
powerline_requires_segment_info to receive this argument.

Warning: Listers are close to useless if they do not have access to this argument.

Refer to segment_info detailed description for further details.

draw_inner_divider If False (default) soft dividers between segments in the listed group will not be drawn
regardless of actual segment settings. If True they will be drawn, again regardless of actual segment settings.
Set it to None in order to respect segment settings.

And also any other argument(s) specified by user in args key (no additional arguments by default).

Listers must return a sequence of pairs. First item in the pair must contain a segment_info dictionary specific to
one of the listed entities.

Second item must contain another dictionary: it will be used to modify the resulting segment. In addition to usual keys
that describe segment the following keys may be present (it is advised that only the following keys will be used):

priority_multiplier Value (usually a float) used to multiply segment priority. It is useful for finer-grained
controlling which segments disappear first: e.g. when listing tab pages make first disappear directory names of
the tabpages which are most far away from current tabpage, then (when all directory names disappeared) buffer
names. Check out existing listers implementation in powerline/listers/vim.py.

5.3 Local themes

From the user point of view local themes are the regular themes with a specific scope where they are applied (i.e.
specific vim window or specific kind of prompt). Used themes are defined in local_themes key.

5.2. Writing listers 55

Powerline, Release beta

5.3.1 Vim local themes

Vim is the only available extension that has a wide variaty of options for local themes. It is the only extension where
local theme key refers to a function as described in local_themes value documentation.

This function always takes a single value named matcher_info which is the same dictionary as segment_info
dictionary. Unlike segments it takes this single argument as a positional argument, not as a keyword one.

Matcher function should return a boolean value: True if theme applies for the given matcher_info dictionary or
False if it is not. When one of the matcher functions returns True powerline takes the corresponding theme at uses
it for the given window. Matchers are not tested in any particular order.

In addition to local_themes configuration key developer of some plugin which wishes to support powerline with-
out including his code in powerline tree may use powerline.vim.VimPowerline.add_local_theme()
method. It accepts two arguments: matcher name (same as in local_themes) and dictionary with theme. This dic-
tionary is merged with top theme and powerline/themes/vim/__main__.json. Note that if user already
specified the matcher in his configuration file KeyError is raised.

5.3.2 Other local themes

Except for Vim only IPython and shells have local themes. Unlike Vim these themes are names with no special
meaning (they do not refer to or cause loading of any Python functions):

Exten-
sion

Theme
name

Description

Shell continua-
tion

Shown for unfinished command (unclosed quote, unfinished cycle).

select Shown for select command available in some shells.

IPython
in2 Continuation prompt: shown for unfinished (multiline) expression, unfinished class or

function definition.
out Displayed before the result.
rewrite Displayed before the actually executed code when autorewrite IPython feature is

enabled.

5.4 Creating new powerline extension

Powerline extension is a code that tells powerline how to highlight and display segments in some set of applications.
Specifically this means

1. Creating a powerline.Powerline subclass that knows how to obtain local configuration overrides. It also
knows how to load local themes, but not when to apply them.

Instance of this class is the only instance that interacts directly with bindings code, so it has a proxy
powerline.Powerline.render() and powerline.Powerline.shutdown() methods and other
methods which may be useful for bindings.

This subclass must be placed directly in powerline directory (e.g. in powerline/vim.py) and named
like VimPowerline (version of the file name without directory and extension and first capital letter +
Powerline). There is no technical reason for naming classes like this.

2. Creating a powerline.renderer.Renderer subclass that knows how to highlight a segment or reset
highlighting to the default value (only makes sense in prompts). It is also responsible for selecting local themes
and computing text width.

This subclass must be placed directly in powerline/renderers directory (for powerline extensions devel-
oped for a set of applications use powerline/renderers/ext/*.py) and named like ExtRenderer

56 Chapter 5. Developer guide

Powerline, Release beta

or AppPromptRenderer. For technical reasons the class itself must be referenced in renderer module
attribute thus allowing only one renderer per one module.

3. Creating an extension bindings. These are to be placed in powerline/bindings/ext and may contain
virtually anything which may be required for powerline to work inside given applications, assuming it does not
fit in other places.

5.4.1 Powerline class

class powerline.Powerline(*args, **kwargs)
Main powerline class, entrance point for all powerline uses. Sets powerline up and loads the configuration.

Parameters

• ext (str) – extension used. Determines where configuration files will searched
and what renderer module will be used. Affected: used ext dictionary from
powerline/config.json, location of themes and colorschemes, render module
(powerline.renders.{ext}).

• renderer_module (str) – Overrides renderer module (defaults to ext). Should be the name
of the package imported like this: powerline.renderers.{render_module}.
If this parameter contains a dot powerline.renderers. is not prepended.
There is also a special case for renderers defined in toplevel modules: foo.
(note: dot at the end) tries to get renderer from module foo (because foo
(without dot) tries to get renderer from module powerline.renderers.foo).
When .foo (with leading dot) variant is used renderer_module will be
powerline.renderers.{ext}{renderer_module}.

• run_once (bool) – Determines whether render() method will be run only once during
python session.

• logger (Logger) – If present no new logger will be created and the provided logger will be
used.

• use_daemon_threads (bool) – When creating threads make them daemon ones.

• shutdown_event (Event) – Use this Event as shutdown_event instead of creating new event.

• config_loader (ConfigLoader) – Instance of the class that manages (re)loading of the con-
figuration.

create_logger()
Create logger

This function is used to create logger unless it was already specified at initialization.

create_renderer(load_main=False, load_colors=False, load_colorscheme=False,
load_theme=False)

(Re)create renderer object. Can be used after Powerline object was successfully initialized. If any of the
below parameters except load_main is True renderer object will be recreated.

Parameters

• load_main (bool) – Determines whether main configuration file (config.json) should
be loaded. If appropriate configuration changes implies load_colorscheme and
load_theme and recreation of renderer object. Won’t trigger recreation if only unre-
lated configuration changed.

• load_colors (bool) – Determines whether colors configuration from colors.json
should be (re)loaded.

5.4. Creating new powerline extension 57

Powerline, Release beta

• load_colorscheme (bool) – Determines whether colorscheme configuration should be
(re)loaded.

• load_theme (bool) – Determines whether theme configuration should be reloaded.

default_log_stream = <open file ‘<stdout>’, mode ‘w’ at 0x7f6c7ffbe150>
Default stream for default log handler

Usually it is sys.stderr, but there is sometimes a reason to prefer sys.stdout or a custom file-like
object. It is not supposed to be used to write to some file.

static do_setup()
Function that does initialization

Should be overridden by subclasses. May accept any number of regular or keyword arguments.

static get_config_paths()
Get configuration paths.

Should be overridden in subclasses in order to provide a way to override used paths.

Returns list of paths

static get_encoding()
Get encoding used by the current application

Usually returns encoding of the current locale.

static get_local_themes(local_themes)
Get local themes. No-op here, to be overridden in subclasses if required.

Parameters local_themes (dict) – Usually accepts {matcher_name : theme_name}.
May also receive None in case there is no local_themes configuration.

Returns anything accepted by self.renderer.get_theme and processable by
self.renderer.add_local_theme. Renderer module is determined by __init__
arguments, refer to its documentation.

init(ext, renderer_module=None, run_once=False, logger=None, use_daemon_threads=True, shut-
down_event=None, config_loader=None)

Do actual initialization.

__init__ function only stores the arguments and runs this function. This function exists for powerline to be
able to reload itself: it is easier to make __init__ store arguments and call overriddable init than tell
developers that each time they override Powerline.__init__ in subclasses they must store actual arguments.

load_colors_config()
Get colorscheme.

Returns dictionary with colors configuration.

load_colorscheme_config(name)
Get colorscheme.

Parameters name (str) – Name of the colorscheme to load.

Returns dictionary with colorscheme configuration.

load_config(cfg_path, cfg_type)
Load configuration and setup watches

Parameters

• cfg_path (str) – Path to the configuration file without any powerline configuration direc-
tory or .json suffix.

58 Chapter 5. Developer guide

Powerline, Release beta

• cfg_type (str) – Configuration type. May be one of main (for config.json file),
colors, colorscheme, theme.

Returns dictionary with loaded configuration.

load_main_config()
Get top-level configuration.

Returns dictionary with top-level configuration.

load_theme_config(name)
Get theme configuration.

Parameters name (str) – Name of the theme to load.

Returns dictionary with theme configuration

reload()
Reload powerline after update.

Should handle most (but not all) powerline updates.

Purges out all powerline modules and modules imported by powerline for segment and matcher functions.
Requires defining setup function that updates reference to main powerline object.

Warning: Not guaranteed to work properly, use it at your own risk. It may break your python code.

render(*args, **kwargs)
Update/create renderer if needed and pass all arguments further to self.renderer.render().

render_above_lines(*args, **kwargs)
Like .render(), but for self.renderer.render_above_lines()

setup(*args, **kwargs)
Setup the environment to use powerline.

Must not be overridden by subclasses. This one only saves setup arguments for reload() method and
calls do_setup().

setup_components(components)
Run component-specific setup

Parameters components (set) – Set of the enabled componets or None.

Should be overridden by subclasses.

shutdown(set_event=True)
Shut down all background threads.

Parameters set_event (bool) – Set shutdown_event and call renderer.shutdown
which should shut down all threads. Set it to False unless you are exiting an application.

If set to False this does nothing more then resolving reference cycle powerline →
config_loader → bound methods → powerline by unsubscribing from con-
fig_loader events.

update_renderer()
Updates/creates a renderer if needed.

5.4. Creating new powerline extension 59

Powerline, Release beta

5.4.2 Renderer class

class powerline.renderer.Renderer(theme_config, local_themes, theme_kwargs, pl, ambiwidth=1,
**options)

Object that is responsible for generating the highlighted string.

Parameters

• theme_config (dict) – Main theme configuration.

• local_themes – Local themes. Is to be used by subclasses from .get_theme() method,
base class only records this parameter to a .local_themes attribute.

• theme_kwargs (dict) – Keyword arguments for Theme class constructor.

• pl (PowerlineLogger) – Object used for logging.

• ambiwidth (int) – Width of the characters with east asian width unicode attribute equal to
A (Ambigious).

• options (dict) – Various options. Are normally not used by base renderer, but all options are
recorded as attributes.

character_translations = {}
Character translations for use in escape() function.

See documentation of unicode.translate for details.

do_render(mode, width, side, line, output_raw, output_width, segment_info, theme)
Like Renderer.render(), but accept theme in place of matcher_info

escape(string)
Method that escapes segment contents.

get_segment_info(segment_info, mode)
Get segment information.

Must return a dictionary containing at least home, environ and getcwd keys (see documentation
for segment_info attribute). This implementation merges segment_info dictionary passed to
.render() method with .segment_info attribute, preferring keys from the former. It also replaces
getcwd key with function returning segment_info[’environ’][’PWD’] in case PWD variable is
available.

Parameters segment_info (dict) – Segment information that was passed to .render()
method.

Returns dict with segment information.

get_theme(matcher_info)
Get Theme object.

Is to be overridden by subclasses to support local themes, this variant only returns .theme attribute.

Parameters matcher_info – Parameter matcher_info that .render() method received.
Unused.

hl(contents, fg=None, bg=None, attrs=None)
Output highlighted chunk.

This implementation just outputs hlstyle() joined with contents.

hlstyle(fg=None, bg=None, attrs=None)
Output highlight style string.

60 Chapter 5. Developer guide

Powerline, Release beta

Assuming highlighted string looks like {style}{contents} this method should output {style}. If
it is called without arguments this method is supposed to reset style to its default.

render(mode=None, width=None, side=None, line=0, output_raw=False, output_width=False, seg-
ment_info=None, matcher_info=None)

Render all segments.

When a width is provided, low-priority segments are dropped one at a time until the line is shorter than
the width, or only segments with a negative priority are left. If one or more segments with "width":
"auto" are provided they will fill the remaining space until the desired width is reached.

Parameters

• mode (str) – Mode string. Affects contents (colors and the set of segments) of rendered
string.

• width (int) – Maximum width text can occupy. May be exceeded if there are too much
non-removable segments.

• side (str) – One of left, right. Determines which side will be rendered. If not present
all sides are rendered.

• line (int) – Line number for which segments should be obtained. Is counted from zero
(botmost line).

• output_raw (bool) – Changes the output: if this parameter is True then in place of one
string this method outputs a pair (colored_string, colorless_string).

• output_width (bool) – Changes the output: if this parameter is True then in place
of one string this method outputs a pair (colored_string, string_width).
Returns a three-tuple if output_raw is also True: (colored_string,
colorless_string, string_width).

• segment_info (dict) – Segment information. See also get_segment_info() method.

• matcher_info – Matcher information. Is processed in get_segment_info() method.

render_above_lines(**kwargs)
Render all segments in the {theme}/segments/above list

Rendering happens in the reversed order. Parameters are the same as in .render() method.

Yield rendered line.

segment_info = {u’getcwd’: <built-in function getcwdu>, u’environ’: {‘CELERY_LOG_REDIRECT_LEVEL’: ‘WARNING’, ‘_MP_FORK_LOGFILE_’: ‘/home/docs/log/celery_proc.log’, ‘NEW_RELIC_CONFIG_FILE’: ‘/home/docs/newrelic.ini’, ‘CELERY_LOG_REDIRECT’: ‘1’, ‘LOGNAME’: ‘docs’, ‘USER’: ‘docs’, ‘PATH’: ‘/home/docs/bin:/usr/local/sbin:/usr/local/bin:/usr/sbin:/usr/bin:/sbin:/bin’, ‘HOME’: ‘/home/docs’, ‘PS1’: ‘(docs)’, ‘TERM’: ‘linux’, ‘SHELL’: ‘/bin/bash’, ‘TZ’: ‘America/Chicago’, ‘_MP_FORK_LOGFORMAT_’: ‘[%(asctime)s: %(levelname)s/%(processName)s] %(message)s’, ‘SHLVL’: ‘1’, ‘SUPERVISOR_ENABLED’: ‘1’, ‘EDITOR’: ‘vim’, ‘DJANGO_PROJECT_DIR’: ‘/home/docs/checkouts/readthedocs.org/readthedocs’, ‘SUDO_USER’: ‘root’, ‘CELERY_LOG_FILE’: ‘/home/docs/log/celery_proc.log’, ‘USERNAME’: ‘docs’, ‘READTHEDOCS’: ‘True’, ‘SUDO_UID’: ‘0’, ‘VIRTUAL_ENV’: ‘/home/docs’, ‘SUPERVISOR_PROCESS_NAME’: ‘celery’, ‘SUPERVISOR_SERVER_URL’: ‘unix:///home/docs/run/supervisord-docs.sock’, ‘_’: ‘/home/docs/bin/supervisord’, ‘SUDO_COMMAND’: ‘/bin/bash -c /home/docs/bin/supervisord –nodaemon’, ‘SUDO_GID’: ‘0’, ‘CELERY_LOADER’: ‘djcelery.loaders.DjangoLoader’, ‘OLDPWD’: ‘/home/docs’, ‘PWD’: ‘/home/docs/checkouts/readthedocs.org/readthedocs’, ‘_MP_FORK_LOGLEVEL_’: ‘20’, ‘MAIL’: ‘/var/mail/docs’, ‘CELERY_LOG_LEVEL’: ‘20’, ‘SUPERVISOR_GROUP_NAME’: ‘celery’}, u’home’: ‘/home/docs’}
Basic segment info

Is merged with local segment information by get_segment_info() method. Keys:

environ Object containing environment variables. Must define at least the following methods:
.__getitem__(var) that raises KeyError in case requested environment variable is not
present, .get(var, default=None) that works like dict.get and be able to be passed to
Popen.

getcwd Function that returns current working directory. Will be called without any arguments, should
return unicode or (in python-2) regular string.

home String containing path to home directory. Should be unicode or (in python-2) regular string or
None.

shutdown()
Prepare for interpreter shutdown. The only job it is supposed to do is calling .shutdown() method for
all theme objects. Should be overridden by subclasses in case they support local themes.

5.4. Creating new powerline extension 61

Powerline, Release beta

strwidth(s)
Function that returns string width.

Is used to calculate the place given string occupies when handling width argument to .render()
method. Must take east asian width into account.

Parameters string (unicode) – String whose width will be calculated.

Returns unsigned integer.

5.5 Tips and tricks for powerline developers

5.5.1 Profiling powerline in Vim

Given that current directory is the root of the powerline repository the following command may be used:

vim --cmd ’let g:powerline_pyeval="powerline#debug#profile_pyeval"’ \
--cmd ’set rtp=powerline/bindings/vim’ \
-c ’runtime! plugin/powerline.vim’ \
{other arguments if needed}

After some time run :WriteProfiling {filename} Vim command. Currently
this only works with recent Vim and python-2*. It should be easy to modify
powerline/bindings/vim/autoload/powerline/debug.vim to suit other needs.

62 Chapter 5. Developer guide

CHAPTER 6

Troubleshooting

6.1 System-specific issues

6.1.1 Troubleshooting on Linux

I can’t see any fancy symbols, what’s wrong?

• Make sure that you’ve configured gvim or your terminal emulator to use a patched font.

• You need to set your LANG and LC_* environment variables to a UTF-8 locale (e.g. LANG=en_US.utf8).
Consult your Linux distro’s documentation for information about setting these variables correctly.

• Make sure that vim is compiled with the --with-features=big flag.

• If you’re using rxvt-unicode make sure that it’s compiled with the --enable-unicode3 flag.

• If you’re using xterm make sure you have told it to work with unicode. You may need -u8 command-line
argument, uxterm shell wrapper that is usually shipped with xterm for this or xterm*utf8 property set to
1 or 2 in ~/.Xresources (applied with xrdb). Note that in case uxterm is used configuration is done via
uxterm*... properties and not xterm*....

In any case the only absolute requirement is launching xterm with UTF-8 locale.

• If you are using bitmap font make sure that /etc/fonts/conf.d/70-no-bitmaps.conf does not exist.
If it does check out your distribution documentation to find a proper way to remove it (so that it won’t reappear
after update). E.g. in Gentoo this is:

eselect fontconfig disable 70-no-bitmaps.conf

(currently this only removes the symlink from /etc/fonts/conf.d). Also check out that no other fontcon-
fig file does not have rejectfont tag that tells fontconfig to disable bitmap fonts (they are referenced as not
scalable).

The fancy symbols look a bit blurry or “off”!

• Make sure that you have patched all variants of your font (i.e. both the regular and the bold font files).

63

Powerline, Release beta

I am seeing strange blocks in place of playing/paused/stopped signs

If you are using powerline_unicode7 top-level theme then symbols for player segments are taken from
U+23F4–U+23FA range which is missing from most fonts. You may fix the issue by using Symbola1 font (or any
other font which contains these glyphs).

If your terminal emulator is using fontconfig library then you can create a fontconfig configuration file with the fol-
lowing contents:

<?xml version="1.0"?>
<!DOCTYPE fontconfig SYSTEM "fonts.dtd">

<fontconfig>
<alias>

<family>Terminus</family>
<prefer><family>Symbola</family></prefer>

</alias>
</fontconfig>

(replace Terminus with the name of the font you are using). Exact sequence of actions you
need to perform is different across distributions, most likely it will work if you put the above
xml into /etc/fonts/conf.d/99-prefer-symbola.conf. On Gentoo you need to put it into
/etc/fonts/conf.d/99-prefer-symbola.conf and run:

eselect fontconfig enable 99-prefer-symbola

.

Warning: This answer is only applicable if you use powerline_unicode7 theme or if you configured
powerline to use the same characters yourself.

6.1.2 Troubleshooting on OS X

I can’t see any fancy symbols, what’s wrong?

• If you’re using iTerm2, please update to this revision2 or newer.

• You need to set your LANG and LC_* environment variables to a UTF-8 locale (e.g. LANG=en_US.utf8).
Consult your Linux distro’s documentation for information about setting these variables correctly.

The colors look weird in the default OS X Terminal app!

• The arrows may have the wrong colors if you have changed the “minimum contrast” slider in the color tab of
your OS X settings.

• The default OS X Terminal app is known to have some issues with the Powerline colors. Please use another
terminal emulator. iTerm2 should work fine.

The colors look weird in iTerm2!

• The arrows may have the wrong colors if you have changed the “minimum contrast” slider in the color tab of
your OS X settings.

1http://users.teilar.gr/ g1951d/
2https://github.com/gnachman/iTerm2/commit/8e3ad6dabf83c60b8cf4a3e3327c596401744af6

64 Chapter 6. Troubleshooting

http://users.teilar.gr/~g1951d/
https://github.com/gnachman/iTerm2/commit/8e3ad6dabf83c60b8cf4a3e3327c596401744af6

Powerline, Release beta

• Please disable background transparency to resolve this issue.

Statusline is getting wrapped to the next line in iTerm2

• Turn off “Treat ambigious-width characters as double width” in Preferences –> Text.

• Alternative: remove fancy dividers (they suck in this case), set ambiwidth to 2.

I receive a NameError when trying to use Powerline with MacVim!

• Please install MacVim using this command:

brew install macvim --env-std --override-system-vim

Then install Powerline locally with pip install --user, or by running these commands in the
powerline directory:

./setup.py build

./setup.py install --user

I receive an ImportError when trying to use Powerline on OS X!

• This is caused by an invalid sys.path when using system vim and system Python. Please try to select another
Python distribution:

sudo port select python python27-apple

• See issue #393 for a discussion and other possible solutions for this issue.

I receive “FSEventStreamStart: register_with_server: ERROR” with status_colors

This is a known4 libuv issue that happens if one is trying to watch too many files. It should
be fixed in libuv-0.12. Until then it is suggested to either disable status_colors (from
powerline.segments.common.vcs.branch()) or choose stat-based watcher (will have effectively
the same effect as disabling status_colors).

6.2 Common issues

6.2.1 After an update something stopped working

Assuming powerline was working before update and stopped only after there are two possible explanations:

• You have more then one powerline installation (e.g. pip and Vundle installations) and you have updated only
one.

• Update brought some bug to powerline.

In the second case you, of course, should report the bug to powerline bug tracker5. In the first you should make sure
you either have only one powerline installation or you update all of them simultaneously (beware that in the second
case you are not supported). To diagnose this problem you may do the following:

3https://github.com/powerline/powerline/issues/39
4https://github.com/joyent/node/issues/5463
5https://github.com/powerline/powerline

6.2. Common issues 65

https://github.com/powerline/powerline/issues/39
https://github.com/joyent/node/issues/5463
https://github.com/powerline/powerline

Powerline, Release beta

1. If this problem is observed within the shell make sure that

python -c ’import powerline; print (powerline.__file__)’

which should report something like /usr/lib64/python2.7/site-packages/powerline/__init__.pyc
(if powerline is installed system-wide) or /home/USER/.../powerline/__init__.pyc (if power-
line was cloned somewhere, e.g. in /home/USER/.vim/bundle/powerline) reports the same
location you use to source in your shell configuration: in first case it should be some location in /usr
(e.g. /usr/share/zsh/site-contrib/powerline.zsh), in the second it should be something
like /home/USER/.../powerline/bindings/zsh/powerline.zsh. If this is true it may be a
powerline bug, but if locations do not match you should not report the bug until you observe it on configuration
where locations do match.

2. If this problem is observed specifically within bash make sure that you clean $POWERLINE_COMMAND and
$PROMPT_COMMAND environment variables on startup or, at least, that it was cleaned after update. While
different $POWERLINE_COMMAND variable should not cause any troubles most of time (and when it will cause
troubles are rather trivial) spoiled $PROMPT_COMMAND may lead to strange error messages or absense of exit
code reporting.

These are the sources which may keep outdated environment variables:

• Any command launched from any application inherits its environment unless callee explicitly requests to
use specific environment. So if you did exec bash after update it is rather unlikely to fix the problem.

• More interesting: tmux is a client-server application, it keeps one server instance per one user. You proba-
bly already knew that, but there is an interesting consequence: once tmux server was started it inherits its
environment from the callee and keeps it forever (i.e. until server is killed). This environment is then in-
herited by applications you start with tmux new-session. Easiest solution is to kill tmux with tmux
kill-server, but you may also use tmux set-environment -u to unset offending variables.

• Also check When using z powerline shows wrong number of jobs: though this problem should not be seen
after update only, it contains another example of $PROMPT_COMMAND spoiling results.

3. If this problem is observed within the vim instance you should check out the output of the following Ex mode
commands

python import powerline as pl ; print (pl.__file__)
python3 import powerline as pl ; print (pl.__file__)

One (but not both) of them will most likely error out, this is OK. The same rules apply as in the 1), but in
place of sourcing you should seek for the place where you modify runtimepath vim option. If you install
powerline using VAM6 then no explicit modifications of runtimpath were performed in your vimrc (runtimepath
is modified by VAM in this case), but powerline will be placed in plugin_root_dir/powerline where
{plugin_root_dir} is stored in VAM settings dictionary: do echo g:vim_addon_manager.plugin_root_dir.

There is a hint if you want to place powerline repository somewhere, but still make powerline package importable
anywhere: use

pip install --user --editable path/to/powerline

6.3 Tmux/screen-related issues

6.3.1 I’m using tmux and Powerline looks like crap, what’s wrong?

• You need to tell tmux that it has 256-color capabilities. Add this to your .tmux.conf to solve this issue:

6https://github.com/MarcWeber/vim-addon-manager

66 Chapter 6. Troubleshooting

https://github.com/MarcWeber/vim-addon-manager

Powerline, Release beta

set -g default-terminal "screen-256color"

• If you’re using iTerm2, make sure that you have enabled the setting Set locale variables automatically in Profiles
→ Terminal → Environment.

• Make sure tmux knows that terminal it is running in support 256 colors. You may tell it tmux by using -2 option
when launching it.

6.3.2 I’m using tmux/screen and Powerline is colorless

• If the above advices do not help, then you need to disable term_truecolor.

• Alternative: set additional_escapes to "tmux" or "screen". Note that it is known to work perfectly in
screen, but in tmux it may produce ugly spaces.

Warning: Both tmux and screen are not resending sequences escaped in such a way. Thus even though
additional escaping will work for the last shown prompt, highlighting will eventually go away when tmux or
screen will redraw screen for some reason.
E.g. in screen it will go away when you used copy mode and prompt got out of screen and in tmux it will go
away immediately after you press <Enter>.

6.3.3 In tmux there is a green bar in place of powerline

In order for tmux bindings to work powerline-config script is required to be present in $PATH. Alternatively
one may define $POWERLINE_CONFIG_COMMAND environment variable pointing to the location of the script. This
variable must be defined prior to launching tmux server and in the environment where server is started from.

6.4 Shell issues

6.4.1 When sourcing shell bindings it complains about missing command or file

If you are using pip based installation do not forget to add pip-specific executable path to
$PATH environment variable. This path usually looks something like $HOME/.local/bin (linux)
or $HOME/Library/Python/{python_version}/bin (OS X). One may check out where
powerline-config script was installed by using pip show -f powerline-status | grep
powerline-config (does not always work).

6.4.2 I am suffering bad lags before displaying shell prompt

To get rid of these lags there currently are two options:

• Run powerline-daemon. Powerline does not automatically start it for you.

• Compile and install libzpython module that lives in https://bitbucket.org/ZyX_I/zpython. This variant is
zsh-specific.

6.4. Shell issues 67

https://bitbucket.org/ZyX_I/zpython

Powerline, Release beta

6.4.3 Prompt is spoiled after completing files in ksh

This is exactly why powerline has official mksh support, but not official ksh support. If you know the solution feel
free to share it in powerline bug tracker7.

6.4.4 When using z powerline shows wrong number of jobs

This happens because z8 is launching some jobs in the background from $POWERLINE_COMMAND and these jobs fail
to finish before powerline prompt is run.

Solution to this problem is simple: be sure that z.sh is sourced strictly after
powerline/bindings/bash/powerline.sh. This way background jobs are spawned by z9 after powerline
has done its job.

6.4.5 When using shell I do not see powerline fancy characters

If your locale encoding is not unicode (any encoding that starts with “utf” or “ucs” will work, case is ignored) powerline
falls back to ascii-only theme. You should set up your system to use unicode locale or forget about powerline fancy
characters.

6.5 Vim issues

6.5.1 My vim statusline has strange characters like ^B in it!

• Please add set encoding=utf-8 to your vimrc.

6.5.2 My vim statusline has a lot of ^ or underline characters in it!

• You need to configure the fillchars setting to disable statusline fillchars (see :h ’fillchars’ for de-
tails). Add this to your vimrc to solve this issue:

set fillchars+=stl:\ ,stlnc:\

6.5.3 My vim statusline is hidden/only appears in split windows!

• Make sure that you have set laststatus=2 in your vimrc.

6.5.4 My vim statusline is not displayed completely and has too much spaces

• Be sure you have ambiwidth option set to single.

• Alternative: set ambiwidth to 2, remove fancy dividers (they suck when ambiwidth is set to double).

7https://github.com/powerline/powerline
8https://github.com/rupa/z
9https://github.com/rupa/z

68 Chapter 6. Troubleshooting

https://github.com/powerline/powerline
https://github.com/rupa/z
https://github.com/rupa/z

Powerline, Release beta

6.5.5 Powerline loses color after editing vimrc

If your vimrc has something like

autocmd! BufWritePost vimrc :source ~/.vimrc

to automatically source vimrc after saving it you must then add nested after pattern (vimrc in this case):

autocmd! BufWritePost vimrc nested :source ~/.vimrc

. Alternatively move :colorscheme command out of the vimrc to the file which will not be automatically resourced.
Observed problem is that when you use :colorscheme command existing highlighting groups are usually cleared,
including those defined by powerline. To workaround this issue powerline hooks Colorscheme event, but when you
source vimrc with BufWritePost event, but without nested this event is not launched. See also autocmd-nested10

Vim documentation.

6.5.6 Powerline loses color after saving any file

It may be one of the incarnations of the above issue: specifically minibufexpl is known to trigger it. If you are using
minibufexplorer you should set

let g:miniBufExplForceSyntaxEnable = 1

variable so that this issue is not triggered. Complete explanation:

1. When MBE autocommand is executed it launches :syntax enable Vim command. . .

2. . . . which makes Vim source syntax/syntax.vim file . . .

3. . . . which in turn sources syntax/synload.vim . . .

4. . . . which executes :colorscheme command. Normally this command triggers Colorscheme event, but
in the first point minibufexplorer did set up autocommands that miss nested attribute meaning that no events
will be triggered when processing MBE events.

Note: This setting was introduced in version 6.3.1 of minibufexpl11 and removed in version 6.5.0 of its successor
minibufexplorer12. It is highly advised to use the latter because minibufexpl13 was last updated late in 2004.

10http://vimpluginloader.sourceforge.net/doc/autocmd.txt.html#autocmd-nested
11http://www.vim.org/scripts/script.php?script_id=159
12http://www.vim.org/scripts/script.php?script_id=3239
13http://www.vim.org/scripts/script.php?script_id=159

6.5. Vim issues 69

http://vimpluginloader.sourceforge.net/doc/autocmd.txt.html#autocmd-nested
http://www.vim.org/scripts/script.php?script_id=159
http://www.vim.org/scripts/script.php?script_id=3239
http://www.vim.org/scripts/script.php?script_id=159

Powerline, Release beta

70 Chapter 6. Troubleshooting

CHAPTER 7

Tips and tricks

7.1 Vim

7.1.1 Useful settings

You may find the following vim settings useful when using the Powerline statusline:

set laststatus=2 " Always display the statusline in all windows
set showtabline=2 " Always display the tabline, even if there is only one tab
set noshowmode " Hide the default mode text (e.g. -- INSERT -- below the statusline)

7.2 Rxvt-unicode

7.2.1 Terminus font and urxvt

The Terminus fonts does not have the powerline glyphs and unless someone submits a patch to the font author, it is
unlikely to happen. However, Andre Klärner came up with this work around: In your ~/.Xdefault file add the
following:

urxvt*font: xft:Terminus:pixelsize=12,xft:Inconsolata\ for\ Powerline:pixelsize=12

This will allow urxvt to fallback onto the Inconsolata fonts in case it does not find the right glyphs within the terminus
font.

7.2.2 Source Code Pro font and urxvt

Much like the terminus font that was mentioned above, a similar fix can be applied to the Source Code Pro fonts.

In the ~/.Xdefaults add the following:

URxvt*font: xft:Source\ Code\ Pro\ Medium:pixelsize=13:antialias=true:hinting=true,xft:Source\ Code\ Pro\ Medium:pixelsize=13:antialias=true:hinting=true

I noticed that Source Code Pro has the glyphs there already, but the pixel size of the fonts play a role in whether or
not the > or the < separators showing up or not. Using font size 12, glyphs on the right hand side of the powerline are
present, but the ones on the left don’t. Pixel size 14, brings the reverse problem. Font size 13 seems to work just fine.

71

Powerline, Release beta

7.3 Reloading powerline after update

Once you have updated powerline you generally have the following options:

1. Restart the application you are using it in. This is the safest one. Will not work if the application uses
powerline-daemon.

2. For shell and tmux bindings (except for zsh with libzpython): do not do anything if you do not use
powerline-daemon, run powerline-daemon --replace if you do.

3. Use powerline reloading feature.

Warning: This feature is an unsafe one. It is not guaranteed to work always, it may render your
Python constantly error out in place of displaying powerline and sometimes may render your
application useless, forcing you to restart.
Do not report any bugs occurred when using this feature unless you know both what caused it
and how this can be fixed.

• When using zsh with libzpython use

powerline-reload

Note: This shell function is only defined when using libzpython.

• When using IPython use

%powerline reload

• When using Vim use

py powerline.reload()
" or (depending on Python version you are using)
py3 powerline.reload()

72 Chapter 7. Tips and tricks

CHAPTER 8

License and credits

Powerline is licensed under the MIT license1.

8.1 Authors

• Kim Silkebækken2

• Nikolay Pavlov3

• Kovid Goyal4

8.2 Contributors

• List of contributors5

• The glyphs in the font patcher are created by Fabrizio Schiavi, creator of the excellent coding font Pragmata
Pro6.

1https://raw.github.com/powerline/powerline/develop/LICENSE
2https://github.com/Lokaltog
3https://github.com/ZyX-I
4https://github.com/kovidgoyal
5https://github.com/powerline/powerline/contributors
6http://www.fsd.it/fonts/pragmatapro.htm

73

https://raw.github.com/powerline/powerline/develop/LICENSE
https://github.com/Lokaltog
https://github.com/ZyX-I
https://github.com/kovidgoyal
https://github.com/powerline/powerline/contributors
http://www.fsd.it/fonts/pragmatapro.htm
http://www.fsd.it/fonts/pragmatapro.htm

Powerline, Release beta

74 Chapter 8. License and credits

CHAPTER 9

Powerline shell commands’ manual pages

9.1 powerline-config manual page

9.1.1 Synopsis

powerline-config [-pPATH]... tmux ACTION
powerline-config [-pPATH]... shell ACTION [COMPONENT] [-sSHELL]

9.1.2 Description

-p, –config-path PATH Path to configuration directory. If it is present then configuration files will only be seeked in
the provided path. May be provided multiple times to search in a list of directories.

-h, –help Display help and exit.

Arguments specific to tmux subcommand

ACTION If action is source then version-specific tmux configuration files are sourced, if it is setenv then special
(prefixed with _POWERLINE) tmux global environment variables are filled with data from powerline configu-
ration.

-h, –help Display help and exit.

Arguments specific to shell subcommand

ACTION If action is command then preferred powerline command is output, if it is uses then powerline-config
script will exit with 1 if specified component is disabled and 0 otherwise.

COMPONENT Only applicable for uses subcommand: makes powerline-config exit with 0 if specific com-
ponent is enabled and with 1 otherwise. tmux component stands for tmux bindings (e.g. those that notify tmux
about current directory changes), prompt component stands for shell prompt.

-s, –shell SHELL Shell for which query is run

-h, –help Display help and exit.

75

Powerline, Release beta

9.1.3 Author

Written by Kim Silkebækken, Nikolay Pavlov, Kovid Goyal and contributors. The glyphs in the font patcher are
created by Fabrizio Schiavi.

9.1.4 Reporting bugs

Report powerline-config bugs to https://github.com/powerline/powerline/issues.

9.1.5 See also

powerline(1)

9.2 powerline-daemon manual page

9.2.1 Synopsis

powerline-daemon [--quiet] [--socket] ([--kill] | (
[--foreground] | [--replace]))

9.2.2 Description

–quiet, -q Without other options: do not complain about already running powerline-daemon instance. Will still exit
with 1. With --kill and --replace: do not show any messages. With --foreground: ignored. Does
not silence exceptions in any case.

–socket, -s Specify socket which will be used for connecting to daemon.

–kill, -k Kill an already running instance.

–foreground, -f Run in the foreground (don’t daemonize).

–replace, -r Replace an already running instance.

-h, –help Display help and exit.

9.2.3 Author

Written by Kim Silkebækken, Nikolay Pavlov, Kovid Goyal and contributors. The glyphs in the font patcher are
created by Fabrizio Schiavi.

9.2.4 Reporting bugs

Report powerline-daemon bugs to https://github.com/powerline/powerline/issues.

9.2.5 See also

powerline(1)

76 Chapter 9. Powerline shell commands’ manual pages

https://github.com/powerline/powerline/issues
https://github.com/powerline/powerline/issues

Powerline, Release beta

9.3 powerline-lint manual page

9.3.1 Synopsis

powerline-lint [-pPATH]... [-d]

9.3.2 Description

-p, –config-path PATH Paths where configuration should be checked, in order. You must supply all paths necessary
for powerline to work, checking partial (e.g. only user overrides) configuration is not supported.

-d, –debug Display additional information. Used for debugging powerline-lint itself, not for debugging con-
figuration.

-h, –help Display help and exit.

9.3.3 Author

Written by Kim Silkebækken, Nikolay Pavlov, Kovid Goyal and contributors. The glyphs in the font patcher are
created by Fabrizio Schiavi.

9.3.4 Reporting bugs

Report powerline-lint bugs to https://github.com/powerline/powerline/issues.

9.3.5 See also

powerline(1), powerline-config(1)

9.4 powerline manual page

9.4.1 Synopsis

powerline EXT [SIDE] [-rMODULE] [-w] [--last-exit-code=INT]
[--last-pipe-status=LIST] [--jobnum=INT]
[-cKEY.KEY=VALUE]... [-tTHEME.KEY.KEY=VALUE]... [-RKEY=VAL]...
[-pPATH]... [--socket=ADDRESS]

9.4.2 Description

EXT Extension: application for which powerline command is launched (usually shell or tmux).

SIDE Side: left and right represent left and right side respectively, above emits lines that are supposed to be
printed just above the prompt and aboveleft is like concatenating above with left with the exception that
only one Python instance is used in this case.

9.3. powerline-lint manual page 77

https://github.com/powerline/powerline/issues

Powerline, Release beta

-r, –renderer-module MODULE Renderer module. Usually something like .bash or .zsh (with leading dot)
which is powerline.renderers.{ext}{MODULE}, may also be full module name (must contain at least
one dot or end with a dot in case it is top-level module) or powerline.renderers submodule (in case there
are no dots).

-w, –width Maximum prompt with. Triggers truncation of some segments.

–last-exit-code INT Last exit code.

–last-pipe-status LIST Like above, but is supposed to contain space-separated array of statuses, representing exit
statuses of commands in one pipe.

–jobnum INT Number of jobs.

-c, –config-override KEY.KEY=VALUE Configuration overrides for config.json. Is translated to a dictionary
and merged with the dictionary obtained from actual JSON configuration: KEY.KEY=VALUE is translated to
{"KEY": {"KEY": VALUE}} and then merged recursively. VALUE may be any JSON value, values
that are not null, true, false, start with digit, {, [are treated like strings. If VALUE is omitted then
corresponding key is removed.

-t, –theme-override THEME.KEY.KEY=VALUE Like above, but theme-specific. THEME should point to an exist-
ing and used theme to have any effect, but it is fine to use any theme here.

-R, –renderer-arg KEY=VAL Like above, but provides argument for renderer. Is supposed to be used only by shell
bindings to provide various data like last-exit-code or last-pipe-status (they are not using --renderer-arg
for historical resons: --renderer-arg was added later).

-p, –config-path PATH Path to configuration directory. If it is present then configuration files will only be seeked in
the provided path. May be provided multiple times to search in a list of directories.

–socket ADDRESS Socket address to use in daemon clients. Is always UNIX domain socket on linux and file socket
on Mac OS X. Not used here, present only for compatibility with other powerline clients. This argument must
always be the first one and be in a form --socket ADDRESS: no = or short form allowed (in other powerline
clients, not here).

-h, –help Display help and exit.

9.4.3 Author

Written by Kim Silkebækken, Nikolay Pavlov, Kovid Goyal and contributors. The glyphs in the font patcher are
created by Fabrizio Schiavi.

9.4.4 Reporting bugs

Report powerline bugs to https://github.com/powerline/powerline/issues.

9.4.5 See also

powerline-daemon(1), powerline-config(1)

78 Chapter 9. Powerline shell commands’ manual pages

https://github.com/powerline/powerline/issues

CHAPTER 10

Indices and tables

• genindex

• modindex

• search

79

Powerline, Release beta

80 Chapter 10. Indices and tables

Python Module Index

p
powerline.listers.pdb, 44
powerline.listers.vim, 43
powerline.segments.common.bat, 27
powerline.segments.common.env, 27
powerline.segments.common.mail, 29
powerline.segments.common.net, 25
powerline.segments.common.players, 29
powerline.segments.common.sys, 24
powerline.segments.common.time, 28
powerline.segments.common.vcs, 24
powerline.segments.common.wthr, 28
powerline.segments.pdb, 36
powerline.segments.shell, 37
powerline.segments.tmux, 38
powerline.segments.vim, 38
powerline.segments.vim.plugin.capslock,

43
powerline.segments.vim.plugin.commandt,

42
powerline.segments.vim.plugin.nerdtree,

43
powerline.segments.vim.plugin.syntastic,

42
powerline.segments.vim.plugin.tagbar,

43
powerline.selectors.vim, 44

81

Powerline, Release beta

82 Python Module Index

Index

A
additional_args() (powerline.segments.Segment static

method), 54
argspecobjs() (powerline.segments.Segment method), 54
attached_clients() (in module powerline.segments.tmux),

38

B
battery() (in module powerline.segments.common.bat),

27
branch() (in module powerline.segments.common.vcs),

24
branch() (in module powerline.segments.vim), 38
bufferlister() (in module powerline.listers.vim), 43
bufnr() (in module powerline.segments.vim), 38

C
capslock_indicator() (in module power-

line.segments.vim.plugin.capslock), 43
character_translations (powerline.renderer.Renderer at-

tribute), 60
clementine() (in module power-

line.segments.common.players), 29
cmus() (in module powerline.segments.common.players),

30
col_current() (in module powerline.segments.vim), 38
continuation() (in module powerline.segments.shell), 37
cpu_load_percent() (in module power-

line.segments.common.sys), 24
create_logger() (powerline.Powerline method), 57
create_renderer() (powerline.Powerline method), 57
critical() (powerline.PowerlineLogger method), 55
csv_col_current() (in module powerline.segments.vim),

38
current_code_name() (in module power-

line.segments.pdb), 36
current_context() (in module powerline.segments.pdb),

36
current_file() (in module powerline.segments.pdb), 36
current_line() (in module powerline.segments.pdb), 36

current_tag() (in module power-
line.segments.vim.plugin.tagbar), 43

cwd() (in module powerline.segments.common.env), 27
cwd() (in module powerline.segments.shell), 37

D
date() (in module powerline.segments.common.time), 28
dbus_player() (in module power-

line.segments.common.players), 31
debug() (powerline.PowerlineLogger method), 55
default_log_stream (powerline.Powerline attribute), 58
do_render() (powerline.renderer.Renderer method), 60
do_setup() (powerline.Powerline static method), 58

E
email_imap_alert() (in module power-

line.segments.common.mail), 29
environment() (in module power-

line.segments.common.env), 27
error() (powerline.PowerlineLogger method), 55
escape() (powerline.renderer.Renderer method), 60
exception() (powerline.PowerlineLogger method), 55
external_ip() (in module power-

line.segments.common.net), 25

F
file_directory() (in module powerline.segments.vim), 39
file_encoding() (in module powerline.segments.vim), 39
file_format() (in module powerline.segments.vim), 39
file_name() (in module powerline.segments.vim), 39
file_scheme() (in module powerline.segments.vim), 39
file_size() (in module powerline.segments.vim), 40
file_type() (in module powerline.segments.vim), 40
file_vcs_status() (in module powerline.segments.vim), 40
finder() (in module power-

line.segments.vim.plugin.commandt), 42
frame_lister() (in module powerline.listers.pdb), 44
fuzzy_time() (in module power-

line.segments.common.time), 28

83

Powerline, Release beta

G
get_config_paths() (powerline.Powerline static method),

58
get_encoding() (powerline.Powerline static method), 58
get_local_themes() (powerline.Powerline static method),

58
get_segment_info() (powerline.renderer.Renderer

method), 60
get_theme() (powerline.renderer.Renderer method), 60

H
hl() (powerline.renderer.Renderer method), 60
hlstyle() (powerline.renderer.Renderer method), 60
hostname() (in module powerline.segments.common.net),

25

I
info() (powerline.PowerlineLogger method), 55
init() (powerline.Powerline method), 58
internal_ip() (in module power-

line.segments.common.net), 26

J
jobnum() (in module powerline.segments.shell), 37

L
last_pipe_status() (in module powerline.segments.shell),

37
last_status() (in module powerline.segments.shell), 37
line_count() (in module powerline.segments.vim), 40
line_current() (in module powerline.segments.vim), 40
line_percent() (in module powerline.segments.vim), 40
load_colors_config() (powerline.Powerline method), 58
load_colorscheme_config() (powerline.Powerline

method), 58
load_config() (powerline.Powerline method), 58
load_main_config() (powerline.Powerline method), 59
load_theme_config() (powerline.Powerline method), 59

M
mode() (in module powerline.segments.shell), 38
mode() (in module powerline.segments.vim), 40
modified_buffers() (in module powerline.segments.vim),

40
modified_indicator() (in module power-

line.segments.vim), 40
mpd() (in module powerline.segments.common.players),

32

N
nerdtree() (in module power-

line.segments.vim.plugin.nerdtree), 43

network_load() (in module power-
line.segments.common.net), 26

O
omitted_args() (powerline.segments.Segment method),

54

P
paste_indicator() (in module powerline.segments.vim), 40
path() (in module power-

line.segments.vim.plugin.commandt), 42
position() (in module powerline.segments.vim), 40
Powerline (class in powerline), 57
powerline.listers.pdb (module), 44
powerline.listers.vim (module), 43
powerline.segments.common.bat (module), 27
powerline.segments.common.env (module), 27
powerline.segments.common.mail (module), 29
powerline.segments.common.net (module), 25
powerline.segments.common.players (module), 29
powerline.segments.common.sys (module), 24
powerline.segments.common.time (module), 28
powerline.segments.common.vcs (module), 24
powerline.segments.common.wthr (module), 28
powerline.segments.pdb (module), 36
powerline.segments.shell (module), 37
powerline.segments.tmux (module), 38
powerline.segments.vim (module), 38
powerline.segments.vim.plugin.capslock (module), 43
powerline.segments.vim.plugin.commandt (module), 42
powerline.segments.vim.plugin.nerdtree (module), 43
powerline.segments.vim.plugin.syntastic (module), 42
powerline.segments.vim.plugin.tagbar (module), 43
powerline.selectors.vim (module), 44
PowerlineLogger (class in powerline), 54

R
rdio() (in module powerline.segments.common.players),

32
readonly_indicator() (in module power-

line.segments.vim), 41
reload() (powerline.Powerline method), 59
render() (powerline.Powerline method), 59
render() (powerline.renderer.Renderer method), 61
render_above_lines() (powerline.Powerline method), 59
render_above_lines() (powerline.renderer.Renderer

method), 61
Renderer (class in powerline.renderer), 60
rhythmbox() (in module power-

line.segments.common.players), 33

S
Segment (class in powerline.segments), 54

84 Index

Powerline, Release beta

segment_info (powerline.renderer.Renderer attribute), 61
setup() (powerline.Powerline method), 59
setup_components() (powerline.Powerline method), 59
shutdown() (powerline.Powerline method), 59
shutdown() (powerline.renderer.Renderer method), 61
single_tab() (in module powerline.selectors.vim), 44
spotify() (in module power-

line.segments.common.players), 34
spotify_apple_script() (in module power-

line.segments.common.players), 35
spotify_dbus() (in module power-

line.segments.common.players), 35
stack_depth() (in module powerline.segments.pdb), 37
strwidth() (powerline.renderer.Renderer method), 61
syntastic() (in module power-

line.segments.vim.plugin.syntastic), 42
system_load() (in module power-

line.segments.common.sys), 25

T
tab_modified_indicator() (in module power-

line.segments.vim), 41
tablister() (in module powerline.listers.vim), 44
tabnr() (in module powerline.segments.vim), 41
trailing_whitespace() (in module power-

line.segments.vim), 41

U
update_renderer() (powerline.Powerline method), 59
uptime() (in module powerline.segments.common.sys),

25
user() (in module powerline.segments.common.env), 27

V
virtcol_current() (in module powerline.segments.vim), 41
virtualenv() (in module power-

line.segments.common.env), 27
visual_range() (in module powerline.segments.vim), 41

W
warn() (powerline.PowerlineLogger method), 55
weather() (in module powerline.segments.common.wthr),

28
window_title() (in module powerline.segments.vim), 42
winnr() (in module powerline.segments.vim), 42

Index 85

	Overview
	Features
	Screenshots

	Installation
	Generic requirements
	Pip installation
	Fonts installation
	Installation on various platforms

	Usage
	Application-specific requirements
	Plugins

	Configuration and customization
	Quick setup guide
	References

	Developer guide
	Writing segments
	Writing listers
	Local themes
	Creating new powerline extension
	Tips and tricks for powerline developers

	Troubleshooting
	System-specific issues
	Common issues
	Tmux/screen-related issues
	Shell issues
	Vim issues

	Tips and tricks
	Vim
	Rxvt-unicode
	Reloading powerline after update

	License and credits
	Authors
	Contributors

	Powerline shell commands’ manual pages
	powerline-config manual page
	powerline-daemon manual page
	powerline-lint manual page
	powerline manual page

	Indices and tables
	Python Module Index

